7,455 research outputs found

    STABILITY OF POLYNOMIALS UNDER CORRELATED COEFFICIENT PERTURBATIONS.

    Get PDF
    The robust stability of polynomials with respect to real parameter variations is investigated. The coefficients of the polynomial are assumed to be linear functions of several real parameters. An algorithm to calculate the maximum allowable variations of the parameters so the roots still remain in prescribed regions of the complex plane is presented. Examples are given to illustrate the method

    Integrated optics for astronomical interferometry. I. Concept and astronomical applications

    Full text link
    We propose a new instrumental concept for long-baseline optical single-mode interferometry using integrated optics which were developed for telecommunication. Visible and infrared multi-aperture interferometry requires many optical functions (spatial filtering, beam combination, photometric calibration, polarization control) to detect astronomical signals at very high angular resolution. Since the 80's, integrated optics on planar substrate have become available for telecommunication applications with multiple optical functions like power dividing, coupling, multiplexing, etc. We present the concept of an optical / infrared interferometric instrument based on this new technology. The main advantage is to provide an interferometric combination unit on a single optical chip. Integrated optics are compact, provide stability, low sensitivity to external constrains like temperature, pressure or mechanical stresses, no optical alignment except for coupling, simplicity and intrinsic polarization control. The integrated optics devices are inexpensive compared to devices that have the same functionalities in bulk optics. We think integrated optics will fundamentally change single-mode interferometry. Integrated optics devices are in particular well-suited for interferometric combination of numerous beams to achieve aperture synthesis imaging or for space-based interferometers where stability and a minimum of optical alignments are wished.Comment: 11 pages, 8 figures, accpeted by Astronomy and Astrophysics Supplement Serie

    Role of pseudospin in quasiparticle interferences in epitaxial graphene probed by high-resolution scanning tunneling microscopy

    Full text link
    Pseudospin, an additional degree of freedom related to the honeycomb structure of graphene, is responsible of many of the outstanding electronic properties found in this material. This article provides a clear understanding of how such pseudospin impacts the quasiparticle interferences of monolayer (ML) and bilayer (BL) graphene measured by low temperature scanning tunneling microscopy and spectroscopy. We have used this technique to map, with very high energy and space resolution, the spatial modulations of the local density of states of ML and BL graphene epitaxialy grown on SiC(0001), in presence of native disorder. We perform a Fourier transform analysis of such modulations including wavevectors up to unit-vectors of the reciprocal lattice. Our data demonstrate that the quasiparticle interferences associated to some particular scattering processes are suppressed in ML graphene, but not in BL graphene. Most importantly, interferences with 2qF wavevector associated to intravalley backscattering are not measured in ML graphene, even on the images with highest resolution. In order to clarify the role of the pseudospin on the quasiparticle interferences, we use a simple model which nicely captures the main features observed on our data. The model unambiguously shows that graphene's pseudospin is responsible for such suppression of quasiparticle interferences features in ML graphene, in particular for those with 2qF wavevector. It also confirms scanning tunneling microscopy as a unique technique to probe the pseudospin in graphene samples in real space with nanometer precision. Finally, we show that such observations are robust with energy and obtain with great accuracy the dispersion of the \pi-bands for both ML and BL graphene in the vicinity of the Fermi level, extracting their main tight binding parameters

    Accuracy and Precision of Near Infra-red Spectroscopy (NIRS) versus Wet Chemistry in Forage Analysis

    Get PDF
    Near Infra-red Spectroscopy (NIRS) is an attractive option for forage analysis. NIRS is less labor intensive, nondestructive, rapid, environmentally friendly and provides accurate and precise results. However, many nutritionists are quick to brush off NIRS, citing ‘poor accuracy’. We evaluated the accuracy and precision of dry matter (DM), crude protein (CP), acid detergent fiber (ADF), and neutral detergent fiber (NDF) of 33 National Forage Testing Association (NFTA) proficiency test (PT) alfalfa hay samples analyzed by NIRS in 7 NIRS Forage and Feed Testing Consortium (NIRSC) member laboratories. The reference method averages (RMA), used to evaluate the NIRS results, were based on the wet chemistry results reported by numerous laboratories participating in the corresponding NFTA proficiency testing rounds. Thus, this study is a robust comparison of NIRS determined results with the corresponding wet chemistry results, which is still a “gold standard” to many nutritionists. These results demonstrate that when NIRS calibrations are developed using good science and applied properly, NIRS is as accurate as wet chemistry in forage nutritional analysis. Further, both intra-laboratory and inter-laboratory precision of NIRS methods are superior to wet chemistry method

    Electronic structure of the (111) and (-1-1-1) surfaces of cubic BN: A local-density-functional ab initio study

    Full text link
    We present ab initio local-density-functional electronic structure calculations for the (111) and (-1-1-1) surfaces of cubic BN. The energetically stable reconstructions, namely the N adatom, N3 triangle models on the (111), the (2x1), boron and nitrogen triangle patterns on the (-1-1-1) surface are investigated. Band structure and properties of the surface states are discussed in detail.Comment: 8 pages, 12 figure

    Shuttle flight pressure instrumentation: Experience and lessons for the future

    Get PDF
    Flight data obtained from the Space Transportation System orbiter entries are processed and analyzed to assess the accuracy and performance of the Development Flight Instrumentation (DFI) pressure measurement system. Selected pressure measurements are compared with available wind tunnel and computational data and are further used to perform air data analyses using the Shuttle Entry Air Data System (SEADS) computation technique. The results are compared to air data from other sources. These comparisons isolate and demonstrate the effects of the various limitations of the DFI pressure measurement system. The effects of these limitations on orbiter performance analyses are addressed, and instrumentation modifications are recommended to improve the accuracy of similar fight data systems in the future

    Origin of Rashba-splitting in the quantized subbands at Bi2Se3 surface

    Full text link
    We study the band structure of the Bi2Se3\text{Bi}_2\text{Se}_3 topological insulator (111) surface using angle-resolved photoemission spectroscopy. We examine the situation where two sets of quantized subbands exhibiting different Rashba spin-splitting are created via bending of the conduction (CB) and the valence (VB) bands at the surface. While the CB subbands are strongly Rashba spin-split, the VB subbands do not exhibit clear spin-splitting. We find that CB and VB experience similar band bending magnitudes, which means, a spin-splitting discrepancy due to different surface potential gradients can be excluded. On the other hand, by comparing the experimental band structure to first principles LMTO band structure calculations, we find that the strongly spin-orbit coupled Bi 6pp orbitals dominate the orbital character of CB, whereas their admixture to VB is rather small. The spin-splitting discrepancy is, therefore, traced back to the difference in spin-orbit coupling between CB and VB in the respective subbands' regions
    corecore