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Department of Electrical  Engineering 
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ABSTRACT 
In this  paper  the  robust  stability of polynomials  with 

repect to real  parameter  variations is investigated.  The 
coefficients of the  polynomial  are  assumed t o  be  linear func- 
tions of several  real  parameters. An algorithm t o  calculate  the 
maximum  allowable  variations of the  parameters so that  the 
roots  still  remain in  prescribed  regions of the  complex  plane is 
presented.  Examples  are given to  illustrate  the  method. 

I. INTRODUCTION 
In many  control  applications  the design objective is to  

keep  the  roots of a certain  polynomial in prescribed  regions of 
the complex plane.  Typically,  the coefficients of the polyno- 
mial  are  functions of one  or  more  parameters. If the  roots of 
the  polynomial  are  to  remain inside these prescribed  regions, 
each  parameter  must  have  some  allowable  range of variations 
from  its  nominal  value. As an  example, consider the basic 
feedback  control  system of Figure 1, whose characteristic poly- 
nomial is given by (1). If the  compensator is simply a  con- 
stant  k,  i.e.  a,=l,  b,=k,  then  one  must find the  range of 
values of k so that  the  roots of p(s)  stay in the  open left-half 
plane. 

This  can be easily accomplished using  classical dontrol  tech- 
niques.  Notice  that in this  example  the coefficiz'its of p(s) will 
be  linear  functions of k. Or,  suppose that  the  compensator is 
fixed and given but,  due to modeling  uncertainty,  the 
coefficients of the  plant  numerator n,(s) and  denominator d,(s) 
vary  from  their  nominal  values. Now one  must  determine how 
much  these coefficients can  vary  independently,  without  the 
roots of p(s)  leaving  the prescribed  region. Notice  that  the 
coefficients of p(s)  are  linear  functions of the coefficients of 
d,(s) and n,(s). 

Consider a polynomial  which  has  its  roots in the  open  left 
half-plane  for  nominal  values  of  its coefficients. The  problem 
of finding intervals, in  which the coefficients may indepen- 
dently  vary  without  driving  the  roots  across  the  imaginary 
axis,  has been  solved  in [I] for  quartics,  and in [2] for polyne 
mials of arbitrary degree. Some  results  and  observations  made 
in 131 allow  a considerable  reduction of computational effort 
over  the  method  presented in Both  papers  make use of 
Kharitanov's  theorem, given in 

In this  paper  it is assumed  that  each coefficient of the 
polynomial  p(s) is dependent upon  a number of real p a r a m e  
ters.  The  object is t o  find bounds on the  allowable  variations 
of these  parameters  such  that  the  roots of p(s)  stay  in a 
prescribed region of the  complex  plane. 

II. DEFINITIONS AND NOTATION 
Let D be  an  open region  in the complex plane.  The  term 

"D-stable" implies that  all  the roots of the  polynomial  p(s)  are 
in  the region D. Cr denotes  the  open  left half-plane. A point 
on the complex plane  is  denoted by s=o+jw. Upper-case 
letters  denote  matrices.  The  standart definition of the 
infinity-norm of a vector x is given  in (2). 

I x I = miax 1 xi I , where  x=(xl, ..., x,) (2) 

III. P R O B L E M   F O R M U L A T I O N  
The  polynomial  p(s,6) is given by (3): 

p(s,6) = a0(6)sn+a,(6)s"-'+ ...+ an(6) ( 3 )  

where 6 = (61, . . . ,6,) is a vector of real  perturbations,  and 
the coefficients of p(s,6) are  linear in the  elements of 6. The 
problem is to  find the  largest t such  that  for  all 19 I < t ,  the 
roots of p(s,6 will remain  in  the region D. The  number e can 
be  considere d a measure of robust  D-stability. Since Si are 
perturbat'ions,  the  problem is meaningless if p(s,O) is not D- 
stable.  The  inequality 1 4  I <c does  not  imply t h a t  all  parame- 
ters  have  to  be in the  same  interval.  Let 16, I < e  imply D- 
stability  for ( 3 ) ,  where Si is defined by 

Then  the  D-stability  intervals defined by 

will result for the  individual  perturbations, Si . p ( 4 )  will be 
D-stable for any 6 satisfying ( 5 ) .  

IV. STABILITY TESTS 
The  requirement  that  the poles of p(s remain in D can  be 

reduced to  the  requirement  that  the po 1 es of an associated 
polynomial p(s) remain in C-. The  polynomial p(s) is con- 
structed  using p(s) and  the definition of the specific region, D. 
The following  regions will be considered. 

Let D = {s:a<a,}. Then  D-stability of p(s)  implies C-- 
stability of 

H d f - P l ~ ~ :  

p(s) = ao(s+ao)n+al(s+ao)n+...+an (6) 

Circles: 
Consider circles s mmetric  with  respect  to  the  real  axis, Le., 
D = {s: (a-a)2+u % <R2}  for  any  real a, R. Then  D-stability 
of p(s)  implies  C--stability of 

p(s) = aO(z+a)"+al(z+a)"-li- ...+ a, (7) 

where 

z = R -  s+ 1 
s- 1 

Sectors: 
These  are regions between  two  rays which are  symmetric  with 
respect to the  real  axis  and  emanate  from  the  origin.  Usually 
the  region of interest is to   the left of the  two  rays, which par- 
tition  the complex plane  into  two  disjoint regions. 
D = {s :w<au}  { s : w > - w }  for  all  real a. D-stability of p(s) 
implies  C--stabi P lty of 

p(s) = p(e%) (9) 
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Again,  sector  stability of p(s) will imply  C--stability of p(s). 
General   Regions:  
In 151, the regions D are defined via  the  Nyquist  curve of cer- 
tain  rational  polynomials  f(s): 

Some regions, with  certain  properties  depending  on  f(s),  are 
defined to  be strongly  admissable.  Strongly  admissable regions 
include regions of the  complex  plane  partitioned by the ellipse, 
hyperbola,  parabola,  limacon,  and  other  curves of interest. 
Strongly  admissable regions have  the  property  that  D-stability 
of p(s) implies C- stability of p(s) in (11), and vice versa. 

Composi te   Regions :  
More  complicated,  even  disjoint regions can be treated  with a 
combination of the  methods  above.  For  example,  these regions 
could be defined by a  number of lines andl'or  sectors.  It is also 
easy to  include regions  which are  rotated  and/or  translated 
versions of all  the  above  mentioned regions by replacing s with 
cls+c2,  where c1 and c2 are  appropriate complex numbers. 

V. A INFINITY NORM PROBLEM 
The  problem of finding absolute  value  bounds for the per- 

Lurbations 6,, so that  the  roots of the  polynomial  p(s,6)  remain 
in D, can be reduced to  the  case D=C- in view of section IV. 
Definition 1: D(w) = (6: p(jw,6)=0 } 
Definition 2: R(E)  = ( 6 :  I 6, I < E }  
For  all 6 in R(t ) ,  every  root of p(s,6) will remain in an  open 
connected  region, because the  roots of a  polynomial  continu- 
ously depend  on  the coefficients. The  roots will remain finite 
as long as a0(6)>0 in (3).  It is not difficult to  show  that if t in 
Definition 2 is given by (12),  the  roots of p(s,6) will remain in 

t = min{  [min min 161 ,] , to } (12) 
*I ScD(d) 

to is the  smallest  number  such  that  some  member of R(to) will 
make  the  leading coefficient of (3) nonpositive. 

p jw,S) can be separated  into  its  real  and  imaginary  parts, 
p ~ ( w , 6  \ and p1(w,6). In  order  to find t in (12),  the following 
problem  must  be solved first: 

min 1 6 )  , subject  to p ~ ( w , 6 ) = 0  , pr(w,6)=0 (13) 

The  constraint  equations of (13) can be expressed as Ax=b  for 
some w ,  where  A is a (2xm)  real  matrix, b is a  (2x1)  real vec- 
tor,  and  x=& 

Assuming  that  the  column  vectors of A  are  pairwise 
linearly  independent, Le. satisfy  the  Haar  condition,  it is not 
hard  to  show  that  any  solution  to (13) has the  property  that 
m-1 of the  entries of x  are  equal in magnitude,  and  the  remain- 
ing  entry is of less or  equal  magnitude. If A does not  satisfy 
the  Haar  condition,  a new matrix  A  satisfying  the  Haar condi- 
tion  can be constructed  from  A.  Let  AllA, ..., Ak be matrices 
composed  from  columns of A; all columns in such  a 
Aj,  j=1, ..., k,  are  scalar  multiples of each  other, i.e. 
rank(Aj)=l. All other  columns of A  not in these  submatrices 
are  linearly  independent  from  any  other  column in A.  Form 
the  matrix  A using the  columns of .4 not included  in any 
A,, ..., Ak, plus  using k  further  columns  obtained in the follow- 
ing  way:  From  each  A. pick an  arbitrary  column  and  express 
all  columns of Aj as scalar  multiples of this chosen column. 

Multiply  this  column by the  sum .of the  absolute  values of 
these  scalars  to  obtain  an  entry  to A. The  columns of A thus 
constructed will be pairwise  linearly  independent.  Having  thus 
constructed  A,  the  solution of (13) can be found using 
Theorem 1. 
Theorem 1: r = min 1x1, = min I z I ,  

In the proof of theorem 1, given in :6], a method is described 
for  constructing  either  x  or z when one of them is known. The 
above  characterization of the  solution to (13) is sufficient to 
construct  an  algorithm for  finding the  solution.  Essentially LI 
(2x2)  systems of equations  must  be solved, where hf=m12m1L2, 
and  ml is the  number of columns in A. Since we are really 
only  interested in the  number  r,  the  minimum infinity norm in 
(13), a  more efficient algorithm will be presented in the next 
section. 

Ax=b R = b  

VI. THE S O L U T I O N  
Let A be a  (2xm)  real  matrix  with rows a l  and %> and  b 

be  a (2x1) real  vector.  It is desired to find 

It will be  assumed  that  rank(A)=2.  Due  to  the  nature of the 
problem,  the  vector  b is always in the  range of A. Hence  when 
rank(A)=l,  (14)  can be solved almost  immidiatly. 

Choose c l r  c2 so that  the j th  element of (c  a  +c2%) is 
zero. Define a as the  vector  clal-c2%  with the'j'' element 
deleted.  The  solution  to  the  problem 

min I z I , subject  to  az=clb,+c2b2  (15) 

is given by (16))  where ai denotes  the ith entry of a ,  

k=  1 

when a i  is nonzero. If 4 happens to  be zero,  set zi  equal  to 
zero. Next,  a  vector x will be constructed using the  rule 

x. = z.  I , i< j   x i+ l  = z i  for i 2 j  (17) 

The  rule given  in (17) is valid for all i such  that zi#O. Subs+ 
quently,  alx=bl  or  3x=b2  can  be used to  solve  for  those 
entries of x  not  calculated by (17).  This  can  be  done  via eqs. 
(15)  and  (16). 
Theorem 2: The  vector x is a  solution  to  (14) if and  only if 
I z I ,2 I x I m, where  x  and z are as constructed  above. 

A proof of the  theorem is given  in !6j. 

lowing algorithm is derived in [6] to  obtain  a  solution  to  (14). 
Algor i thm:  
(a)  Find c1 and  c so that  the  j th element of /clal+c2%j is 
zero.  Since  rank(A7 = 2, cI#0#c2.  Construct a by deleting 
the  jth  element of clal+c2%. 
(b)  Solve az = jclbl+c2b2] for min I z 1 ~ and  construct  x  via 
eqs. (16)  and  (17). If I z I ,> I xj I , x is the  solution  to  (14). In 
that  case  stop. 
(c)  Set 0. = 0 and u; = sgn(x;),  where Bi is the  ith  element of 
clal+c2%.  Then 

Using theorem 2 and  the  Ascent  Algorithm in [ 7 ; ,  the fol- 

J 

Diei = 14 I for  i<j, ui+lBi+l = I a i [  for i 2 j  (18) 

Let p = sgn(xj),  and Xi = (-qp)aki  for  ifj; aki is the  ith ele- 
r,lent of ak. (k)  is 1 or 2 ,  and is restricted by the  condition 
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akj#O. Find  the index Q = i for which -is maximum. Set 

j T= a, and go to  Step  (a).  

Example: Let A = b . 2  1] b = I:] For j = 3, 

c l = l ,  c2=0.  Then a = [2,-3,1]. Doing step  (b), 

Xi 
ai4 

2 - 3 0 1  

1  1  1 
6  6. 

z1 = X I  = --, z2 = x2 = 6,z4 = x4 = -- 

Using %x = b,! x3=1/2. Hence I z 1 , = - < I x I , = 112 1 
6 

1 -2 1 1 1 4  

2 '  2 '  1 1 0464 
max{- - -} = -= - Hence,  the new j is 4. 

Now c1 = 1, c2 = 1.  Then a = (1, -5, - 2 ) .  z1  = xl  = -i 
z2 = x2 = -, z3 = x3 = - Using alxl = bl, x 4  = -. 
Hence I x I ,< I z I ,. 

Algorithm 3 converges in a t  most  m  steps.  Step  (b) of 
the  algorithm  can be done  m  times, if desired, for j = l , . . . ,m.  
For  each  value of j a z and  an  x is obtained.  One of these 1s 
the  solution  to  (14).  The following  corollary determines  some 
additional  properties of this  solution: 

1 1 4 '  
4 4  4 

(22b) 

The  minimum infinit,y norm  solution of (22) for each  t in i0,w) 
must now be found. As t -+ c o ,  161 co+ 1, since  (21)  reduces 
to  t26, = -t2  and -2t6, = 2t, in this case. Figure  2  shows 
16 I ?) in function of t.  Table I gives 16 I co for  intermediate 

values of t .  Hence for 161 , < 0.055,  the  roots of p(s)  remain 
to  the left of the  parabola. 
In other  words, for any  set of coefficients taken frcjm 
a,,~[!.945, 1.0551, alc[3.78, 4.221, "~33.78, 4.221, the  roots of 
(a,,s-+als-%) will remain to  the  left of the  parabola 
y*= -x-l. 

TABLE I 

Perturbation  bounds  with  respect  to a parabola 

iETqmnm 
0.2 0.42 0.79  0.055 
0.3  0.34 
0.4 0.26 

0.84 0.069 

0.6 0.12 
1.0  0.11 0.5 0.19 
0.9  0.085 

3.0 0.65 0.7 0.08 
2.0 0.47 

Corollary 1: Let the  m possible z obtainable in Step  (b) of 
Algorithm 1 be called zl,...,zm,  and  the  corrosponding  x con- 
structed  from  them be called X I ,  ..., X"'. One of these is the CONCLUDING REMARKS 
solution  to  (14). If The  investigation of robust  stability  of  polynomials  with 

resDect t o  coefficient variations was extended to  include  two 

then  xi is the unique solution  to  (14). 
The proof of this  corollary involves the  application of the 

monotonicity of the  Ascent  Algorithm in 171, and is given in 
61. There  it is also  proven  that  the  above  algorithm will work 
or a matrix A which is not  Haar. In view of the  corollary, a 

closed-form expression of the infinity norm of the  solution  to 
(14) is given by the following theorem. 

1 

VI. A NUMERICAL EXAMPLE 
Consider  the  polynomial 

It is desired t o  find t ,  so that for all 16,1 < 6 the  roots of the 
olynomial  stay to   the left of the  parabola yh = -x-1. From 
51 we find that  f ( z )  = z2+z-1 and  h(z) = 1 must be used for 
11). Upon substitution,  the coefficients of the  resulting poly- 

nomial p ( ~ )  are given by 
P 

For  all 14 I < c,  p(s) must  have  roots in C-. Substituting 
z = j w  and  setting  the  real  and  imaginary  parts of p(jw) equal 
t o  zero,  one  obtains  (with  t = w2):  

'(t2+t+l)60+(-4t-4)61+462 = -t2+3t-1 ( 2 2 4  

new cases.  First,  the coefficients themselves  were  assumed  to 
be  linear  functions of several  varying  real  parameters.  Second, 
a  variety of regions,  in  which the poles of the  polynomials 
have  to  remain in spite of the  real  paramet,er  variations,  was 
considered. An algorithm  was given to  calculate  the  maximum 
permissable  real  parameter  variations  under  these generalized 
conditions.  The  algorithm easily permits  the  investigation of 
polynomials  with complex  coefficients. This  algorithm  was 
used in (8 to assess the effectiveness of a  matrix  robustness 
measure,  t h e  p-measure, which was first reported in 191. 

171 

i81 
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