41 research outputs found

    Diffuse hydrological mass transport through catchments: scenario analysis of coupled physical and biogeochemical uncertainty effects

    Get PDF
    This paper quantifies and maps the effects of coupled physical and biogeochemical variability on diffuse hydrological mass transport through and from catchments. It further develops a scenario analysis approach and investigates its applicability for handling uncertainties about both physical and biogeochemical variability and their different possible cross-correlation. The approach enables identification of conservative assumptions, uncertainty ranges, as well as pollutant/nutrient release locations and situations for which further investigations are most needed in order to reduce the most important uncertainty effects. The present scenario results provide different statistical and geographic distributions of advective travel times for diffuse hydrological mass transport. The geographic mapping can be used to identify potential hotspot areas with large mass loading to downstream surface and coastal waters, as well as their opposite, potential lowest-impact areas within the catchment. Results for alternative travel time distributions show that neglect or underestimation of the physical advection variability, and in particular of those transport pathways with much shorter than average advective solute travel times, can lead to substantial underestimation of pollutant and nutrient loads to downstream surface and coastal waters. This is particularly true for relatively high catchment-characteristic product of average attenuation rate and average advective travel time, for which mass delivery would be near zero under assumed transport homogeneity but can be orders of magnitude higher for variable transport conditions. A scenario of high advection variability, with a significant fraction of relatively short travel times, combined with a relevant average biogeochemical mass attenuation rate, emerges consistently from the present results as a generally reasonable, conservative assumption for estimating maximum diffuse mass loading, when the prevailing physical and biogeochemical variability and cross-correlation are uncertain

    Tradeoffs and synergies in wetland multifunctionality: A scaling issue

    Get PDF
    Wetland area in agricultural landscapes has been heavily reduced to gain land for crop production, but in recent years there is increased societal recognition of the negative consequences from wetland loss on nutrient retention, biodiversity and a range of other benefits to humans. The current trend is therefore to re-establish wetlands, often with an aim to achieve the simultaneous delivery of multiple ecosystem services, i.e., multifunctionality. Here we review the literature on key objectives used to motivate wetland re-establishment in temperate agricultural landscapes (provision of flow regulation, nutrient retention, climate mitigation, biodiversity conservation and cultural ecosystem services), and their relationships to environmental properties, in order to identify potential for tradeoffs and synergies concerning the development of multifunctional wetlands. Through this process, we find that there is a need for a change in scale from a focus on single wetlands to wetlandscapes (multiple neighboring wetlands including their catchments and surrounding landscape features) if multiple societal and environmental goals are to be achieved. Finally, we discuss the key factors to be considered when planning for re-establishment of wetlands that can support achievement of a wide range of objectives at the landscape scale

    Publisher Correction: Hydro-climatic changes of wetlandscapes across the world

    Get PDF
    Assessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes

    GIS analysis of effects of future Baltic sea level rise on the island of Gotland, Sweden

    No full text
    Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions needs to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in developed countries. We study both the quantity of the loss of features of infrastructure, cultural, and natural value in the case of a 2&thinsp;m sea level rise of the Baltic Sea and the effects of climate change on seawater intrusion in coastal aquifers, which indirectly cause saltwater intrusion in wells. We conduct a multi-criteria risk analysis by using lidar data on land elevation and GIS-vulnerability mapping, which gives the application of distance and elevation parameters formerly unimaginable precision. We find that in case of a 2&thinsp;m sea level rise, 3&thinsp;% of the land area of Gotland, corresponding to 99&thinsp;km<sup>2</sup>, will be inundated. The features most strongly affected are items of touristic or nature value, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some valuable features will be irreversibly lost due to, for example, inundation of sea stacks and the passing of tipping points for seawater intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and planning are required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic multi-feature studies of future consequences of sea level rise are required to identify overall consequences for individual regions

    Hydrological responses to climate change conditioned by historic alterations of land-use and water-use

    No full text
    This paper quantifies and conditions expected hydrological responses in the Aral Sea Drainage Basin (ASDB; occupying 1.3 % of the earth's land surface), Central Asia, to multi-model projections of climate change in the region from 20 general circulation models (GCMs). The aim is to investigate how uncertainties of future climate change interact with the effects of historic human re-distributions of water for land irrigation to influence future water fluxes and water resources. So far, historic irrigation changes have greatly amplified water losses by evapotranspiration (ET) in the ASDB, whereas the 20th century climate change has not much affected the regional net water loss to the atmosphere. Projected future climate change (for the period 2010–2039) however is here calculated to considerably increase the net water loss to the atmosphere. Furthermore, the ET response strength to any future temperature change will be further increased by maintained (or increased) irrigation practices. With such irrigation practices, the river runoff is likely to decrease to near-total depletion, with risk for cascading ecological regime shifts in aquatic ecosystems downstream of irrigated land areas. Without irrigation, the agricultural areas of the principal Syr Darya river basin could sustain a 50 % higher temperature increase (of 2.3 °C instead of the projected 1.5 °C until 2010–2039) before yielding the same consumptive ET increase and associated &lt;i&gt;R&lt;/i&gt; decrease as with the present irrigation practices

    Interpreting characteristic drainage timescale variability across Kilombero Valley, Tanzania

    No full text
    We explore seasonal variability and spatiotemporal patterns in characteristic drainage timescale (K) estimated from river discharge records across the Kilombero Valley in central Tanzania. K values were determined using streamflow recession analysis with a Brutsaert–Nieber solution to the linearized Boussinesq equation. Estimated K values were variable, comparing between wet and dry seasons for the relatively small catchments draining upland positions. For the larger catchments draining through valley bottoms, K values were typically longer and more consistent across seasons. Variations in K were compared with long-term averaged, Moderate-resolution Imaging Spectroradiometer-derived monthly evapotranspiration. Although the variations in K were potentially related to evapotranspiration, the influence of data quality and analysis procedure could not be discounted. As such, even though recession analysis offers a potential approach to explore aquifer release timescales and thereby gain insight to a region's hydrology to inform water resources management, care must be taken when interpreting spatiotemporal shifts in K in connection with process representation in regions like the Kilombero Valley
    corecore