2,305 research outputs found

    Hip contact forces in asymptomatic total hip replacement patients differ from normal healthy individuals: implications for preclinical testing

    Get PDF
    BACKGROUND Preclinical durability testing of hip replacement implants is standardised by ISO-14242-1 (2002) which is based on historical inverse dynamics analysis using data obtained from a small sample of normal healthy individuals. It has not been established whether loading cycles derived from normal healthy individuals are representative of loading cycles occurring in patients following total hip replacement. METHODS Hip joint kinematics and hip contact forces derived from multibody modelling of forces during normal walking were obtained for 15 asymptomatic total hip replacement patients and compared to 38 normal healthy individuals and to the ISO standard for pre-clinical testing. FINDINGS Hip kinematics in the total hip replacement patients were comparable to the ISO data and the hip contact force in the normal healthy group was also comparable to the ISO cycles. Hip contact forces derived from the asymptomatic total hip replacement patients were comparable for the first part of the stance period but exhibited 30% lower peak loads at toe-off. INTERPRETATION Although the ISO standard provides a representative kinematic cycle, the findings call into question whether the hip joint contact forces in the ISO standard are representative of those occurring in the joint following total hip replacement

    Unilateral total hip replacement patients with symptomatic leg length inequality have abnormal hip biomechanics during walking

    Get PDF
    BACKGROUND Symptomatic leg length inequality accounts for 8.7% of total hip replacement related claims made against the UK National Health Service Litigation authority. It has not been established whether symptomatic leg length inequality patients following total hip replacement have abnormal hip kinetics during gait. METHODS Hip kinetics in 15 unilateral total hip replacement patients with symptomatic leg length inequality during gait was determined through multibody dynamics and compared to 15 native hip healthy controls and 15 'successful' asymptomatic unilateral total hip replacement patients. FINDING More significant differences from normal were found in symptomatic leg length inequality patients than in asymptomatic total hip replacement patients. The leg length inequality patients had altered functions defined by lower gait velocity, reduced stride length, reduced ground reaction force, decreased hip range of motion, reduced hip moment and less dynamic hip force with a 24% lower heel-strike peak, 66% higher mid-stance trough and 37% lower toe-off peak. Greater asymmetry in hip contact force was also observed in leg length inequality patients. INTERPRETATION These gait adaptions may affect the function of the implant and other healthy joints in symptomatic leg length inequality patients. This study provides important information for the musculoskeletal function and rehabilitation of symptomatic leg length inequality patients

    Two-Loop Calculations with Vertex Corrections in the Walecka Model

    Full text link
    Two-loop corrections with scalar and vector form factors are calculated for nuclear matter in the Walecka model. The on-shell form factors are derived from vertex corrections within the framework of the model and are highly damped at large spacelike momenta. The two-loop corrections are evaluated first by using the one-loop parameters and mean fields and then by refitting the total energy/baryon to empirical nuclear matter saturation properties. The modified two-loop corrections are significantly smaller than those computed with bare vertices. Contributions from the anomalous isoscalar form factor of the nucleon are included for the first time. The effects of the implicit density dependence of the form factors, which arise from the shift in the baryon mass, are also considered. Finally, necessary extensions of these calculations are discussed.Comment: 29 pages in REVTeX, 18 figures, preprint IU/NTC 94-02 //OSU--94-11

    A cancer-associated, genome protective programme engaging PKCε

    Get PDF
    Associated with their roles as targets for tumour promoters, there has been a long-standing interest in how members of the protein kinase C (PKC) family act to modulate cell growth and division. This has generated a great deal of observational data, but has for the most part not afforded clear mechanistic insights into the control mechanisms at play. Here, we review the roles of PKCε in protecting transformed cells from non-disjunction. In this particular cell cycle context, there is a growing understanding of the pathways involved, affording biomarker and interventional insights and opportunities

    Dirac Cat States in Relativistic Landau Levels

    Full text link
    We show that a relativistic version of Schrodinger cat states, here called Dirac cat states, can be built in relativistic Landau levels when an external magnetic field couples to a relativistic spin 1/2 charged particle. Under suitable initial conditions, the associated Dirac equation produces unitarily Dirac cat states involving the orbital quanta of the particle in a well defined mesoscopic regime. We demonstrate that the proposed Dirac cat states have a purely relativistic origin and cease to exist in the non-relativistic limit. In this manner, we expect to open relativistic quantum mechanics to the rich structures of quantum optics and quantum information.Comment: Revtex4, color figures, submitted for publicatio
    corecore