5,288 research outputs found

    HESS J1825-137: A pulsar wind nebula associated with PSR B1823-13?

    Full text link
    HESS J1825-137 was detected with a significance of 8.1 σ\sigma in the Galactic Plane survey conducted with the H.E.S.S. instrument in 2004. Both HESS J1825-137 and the X-ray pulsar wind nebula G18.0--0.7 (associated with the Vela-like pulsar PSR B1823-13) are offset south of the pulsar, which may be the result of the SNR expanding into an inhomogeneous medium. The TeV size (∌35\sim 35 pc, for a distance of 4 kpc) is ∌6\sim 6 times larger than the X-ray size, which may be the result of propagation effects as a result of the longer lifetime of TeV emitting electrons, compared to the relatively short lifetime of keV synchrotron emitting electrons. The TeV photon spectral index of ∌2.4\sim 2.4 can also be related to the extended PWN X-ray synchrotron photon index of ∌2.3\sim 2.3, if this spectrum is dominated by synchrotron cooling. The anomalously large size of the pulsar wind nebula can be explained if the pulsar was born with a relatively large initial spindown power and braking index n∌2n\sim 2, provided that the SNR expanded into the hot ISM with relatively low density (∌0.003\sim 0.003 cm−3^{-3}).Comment: 4 pages, 4 figures, to appear in the Proc. of the 29th International Cosmic Ray Conference, OG Sessio

    Metallic phase of the quantum Hall effect in four-dimensional space

    Get PDF
    We study the phase diagram of the quantum Hall effect in four-dimensional (4D) space. Unlike in 2D, in 4D there exists a metallic as well as an insulating phase, depending on the disorder strength. The critical exponent Μ≈1.2\nu\approx 1.2 of the diverging localization length at the quantum Hall insulator-to-metal transition differs from the semiclassical value Îœ=1\nu=1 of 4D Anderson transitions in the presence of time-reversal symmetry. Our numerical analysis is based on a mapping of the 4D Hamiltonian onto a 1D dynamical system, providing a route towards the experimental realization of the 4D quantum Hall effect.Comment: 4+epsilon pages, 3 figure

    Gamma-ray emission associated with Cluster-scale AGN Outbursts

    Full text link
    Recent observations have revealed the existence of enormously energetic ~10^61 erg AGN outbursts in three relatively distant galaxy clusters. These outbursts have produced bubbles in the intra-cluster medium, apparently supported by pressure from relativistic particles and/or magnetic fields. Here we argue that if > GeV particles are responsible then these particles are very likely protons and nuclei, rather than electrons, and that the gamma-ray emission from these objects, arising from the interactions of these hadrons in the intra-cluster medium, may be marginally detectable with instruments such as GLAST and HESS.Comment: 8 pages, 4 figures, accepted by MNRA

    Global adaptation in networks of selfish components: emergent associative memory at the system scale

    No full text
    In some circumstances complex adaptive systems composed of numerous self-interested agents can self-organise into structures that enhance global adaptation, efficiency or function. However, the general conditions for such an outcome are poorly understood and present a fundamental open question for domains as varied as ecology, sociology, economics, organismic biology and technological infrastructure design. In contrast, sufficient conditions for artificial neural networks to form structures that perform collective computational processes such as associative memory/recall, classification, generalisation and optimisation, are well-understood. Such global functions within a single agent or organism are not wholly surprising since the mechanisms (e.g. Hebbian learning) that create these neural organisations may be selected for this purpose, but agents in a multi-agent system have no obvious reason to adhere to such a structuring protocol or produce such global behaviours when acting from individual self-interest. However, Hebbian learning is actually a very simple and fully-distributed habituation or positive feedback principle. Here we show that when self-interested agents can modify how they are affected by other agents (e.g. when they can influence which other agents they interact with) then, in adapting these inter-agent relationships to maximise their own utility, they will necessarily alter them in a manner homologous with Hebbian learning. Multi-agent systems with adaptable relationships will thereby exhibit the same system-level behaviours as neural networks under Hebbian learning. For example, improved global efficiency in multi-agent systems can be explained by the inherent ability of associative memory to generalise by idealising stored patterns and/or creating new combinations of sub-patterns. Thus distributed multi-agent systems can spontaneously exhibit adaptive global behaviours in the same sense, and by the same mechanism, as the organisational principles familiar in connectionist models of organismic learning

    Attitude determination of the spin-stabilized Project Scanner spacecraft

    Get PDF
    Attitude determination of spin-stabilized spacecraft using star mapping techniqu

    Decaying dark matter: a stacking analysis of galaxy clusters to improve on current limits

    Full text link
    We show that a stacking approach to galaxy clusters can improve current limits on decaying dark matter by a factor ≳5−100\gtrsim 5-100, with respect to a single source analysis, for all-sky instruments such as Fermi-LAT. Based on the largest sample of X-ray-selected galaxy clusters available to date (the MCXC meta-catalogue), we provide all the astrophysical information, in particular the astrophysical term for decaying dark matter, required to perform an analysis with current instruments.Comment: 6 pages, 3 figures, supplementary file available on demand, accepted for publication in PR
    • 

    corecore