9,673 research outputs found

    Ab-initio determined electronic and magnetic properties of half-metallic NiCrSi and NiMnSi Heusler alloys; the role of interfaces and defects

    Full text link
    Using state-of-the-art first-principles calculations we study the properties of the ferromagnetic Heusler compounds NiYSi where Y stands for V, Cr or Mn. NiCrSi and NiMnSi contrary to NiVSi are half-metallic at their equilibrium lattice constant exhibiting integer values of the total spin magnetic moment and thus we concentrate on these two alloys. The minority-spin gap has the same characteristics as for the well-known NiMnSb alloy being around \sim1 eV. Upon tetragonalization the gap is present in the density of states even for expansion or contraction of the out-of-plane lattice parameter by 5%. The Cr-Cr and Mn-Mn interactions make ferromagnetism extremely stable and the Curie temperature exceeds 1000 K for NiMnSi. Surface and interfaces with GaP, ZnS and Si semiconductors are not half-metallic but in the case of NiCrSi the Ni-based contacts present spin-polarization at the Fermi level over 90%. Finally, we show that there are two cases of defects and atomic-swaps. The first-ones which involve the Cr(Mn) and Si atoms induce states at the edges of the gap which persists for a moderate-concentration of defects. Defects involving Ni atoms induce states localized within the gap completely destroying the half-metallicity. Based on single-impurity calculations we associate these states to the symmetry of the crystal

    3d-electron induced magnetic phase transition in half-metallic semi-Heusler alloys

    Get PDF
    We study the effect of the non-magnetic 3\textit{d} atoms on the magnetic properties of the half-metallic (HM) semi-Heusler alloys Co1x_{1-x}Cux_{x}MnSb and Ni1x_{1-x}Cux_{x}MnSb (0x10 \leq x \leq 1) using first-principles calculations. We determine the magnetic phase diagram of both systems at zero temperature and obtain a phase transition from a ferromagnetic to an antiferromagnetic state. For low Cu concentrations the ferromagnetic RKKY-like exchange mechanism is dominating, while the antiferromagnetic superexchange coupling becomes important for larger Cu content leading to the observed magnetic phase transition. A strong dependence of the magnetism in both systems on the position of the Fermi level within the HM gap is obtained. Obtained results are in good agreement with the available experimental data

    Establishing the potential for using routine data on Incapacity Benefit to assess the local impact of policy initiatives

    Get PDF
    <i>Background</i>: Incapacity Benefit (IB) is the key contributory benefit for people who are incapable of work because of illness or disability. <i>Methods</i>: The aims were to establish the utility of routinely collected data for local evaluation and to provide a descriptive epidemiology of the IB population in Glasgow and Scotland for the period 2000–05 using data supplied by the Department for Work and Pensions. <i>Results</i>: Glasgow's IB population is large in absolute and relative terms but is now falling, mainly due to a decrease in on flow. Claimants, tend to be older, have a poor work history and suffer from mental health problems. The rate of decline has been greater in Glasgow than Scotland, although the rate of on flow is still higher. <i>Conclusions</i>: Department for Work and Pensions (DWP) data can be used locally to provide important insights into the dynamics of the IB population. However, to be truly useful, more work needs to be undertaken to combine the DWP data with other information

    Magnetism of mixed quaternary Heusler alloys: (Ni,T)2_{2}MnSn (T=Cu,Pd) as a case study

    Full text link
    The electronic properties, exchange interactions, finite-temperature magnetism, and transport properties of random quaternary Heusler Ni2_{2}MnSn alloys doped with Cu- and Pd-atoms are studied theoretically by means of {\it ab initio} calculations over the entire range of dopant concentrations. While the magnetic moments are only weakly dependent on the alloy composition, the Curie temperatures exhibit strongly non-linear behavior with respect to Cu-doping in contrast with an almost linear concentration dependence in the case of Pd-doping. The present parameter-free theory agrees qualitatively and also reasonably well quantitatively with the available experimental results. An analysis of exchange interactions is provided for a deeper understanding of the problem. The dopant atoms perturb electronic structure close to the Fermi energy only weakly and the residual resistivity thus obeys a simple Nordheim rule. The dominating contribution to the temperature-dependent resistivity is due to thermodynamical fluctuations originating from the spin-disorder, which, according to our calculations, can be described successfully via the disordered local moments model. Results based on this model agree fairly well with the measured values of spin-disorder induced resistivity.Comment: 13 pages, 13 figure

    Processing and Deploying the McDonnell Douglas Payload Assist Module (PAM)

    Get PDF
    This pap*r presents the flow of the operational PAM system from the time processing is started at the launch site through deployment from the Orbiters. It addresses the ground checkout activities, in-orbit operations including crew and ground personnel system evaluation and command activities, and PAM deployment from the Orbiter. Additionally, transfer orbit errors for two PAMs used on STS-5 are presented. The PAM ground processing approach affords maximum assurance of a flight-ready PAM prior to mating the spacecraft and provides a cargo element that is fully verified as flightready before integration with the cargo integration test equipment (CITE) and the Orbiter. The PAM system design and on-board data displays give the astronauts the capability to evaluate the status of the PAM\u27s health and deploy the PAM/spacecraft without air-to-ground data or communications

    The kinetics of surfactant desorption at the air–solution interface

    Get PDF
    The kinetics of desorption of the anionic surfactant sodium dodecylbenzene sulfonate at the air–solution interface have been studied using neutron reflectivity (NR). The experimental arrangement incorporates a novel flow cell in which the subphase can be exchanged (diluted) using a laminar flow whilst the surface region remains unaltered. The kinetics of the desorption is relatively slow and occurs over many tens of minutes compared with the dilution timescale of approximately 10–30 minutes. A detailed mathematical model, in which the rate of the desorption is determined by transport through a near-surface diffusion layer into a diluted bulk solution below, is developed and provides a good description of the timedependent adsorption data.\ud \ud A key parameter of the model is the ratio of the depth of the diffusion layer, Hc , to the depth of the fluid, Hf, and we find that this is related to the reduced Péclet number, Pe*, for the system, via Hc/Hf, = C/Pe* 1/ 2 . Although from a highly idealised experimental arrangement, the results provide an important insight into the ‘rinse mechanism’, which is applicable to a wide variety of domestic and industrial circumstances

    Surface Properties of the Half- and Full-Heusler Alloys

    Full text link
    Using a full-potential \textit{ab-initio} technique I study the electronic and magnetic properties of the (001) surfaces of the half-Heusler alloys, NiMnSb, CoMnSb and PtMnSb and of the full-Heusler alloys Co2_2MnGe, Co2_2MnSi and Co2_2CrAl. The MnSb terminated surfaces of the half-Heusler compounds present properties similar to the bulk compounds and, although the half-metallicity is lost, an important spin-polarisation at the Fermi level. In contrast to this the Ni terminated surface shows an almost zero net spin-polarisation. While the bulk Co2_2MnGe and Co2_2MnSi are almost half-ferromagnetic, their surfaces lose the half-metallic character and the net spin-polarisation at the Fermi level is close to zero. Contrary to these compounds the CrAl terminated (001) surface of Co2_2CrAl shows a spin polarisation of about 84%.Comment: 14 pages, 6 figure

    Polyaryl ethers and related polysiloxane copolymer molecular coatings preparation and radiation degrdation

    Get PDF
    Poly(arylene ether sulfones) comprise a class of materials known as engineering thermoplastics which have a variety of important applications. These polymers are tough, rigid materials with good mechanical properties over a wide temperature range, and they are processed by conventional methods into products typically having excellent hydrolytic, thermal, oxidative and dimensional stability. Wholly aromatic random copolymers of hydroquinone and biphenol with 4.4 prime dichlorodiphenyl sulfone were synthesized via mechanical nucleophilic displacement. Their structures were characterized and mechanical behavior studied. These tough, ductile copolymers show excellent radiation resistance to electron beam treatment and retain much of the mechanical properties up to at least 700 Mrads under argon
    corecore