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Abstract

We describe the isolation and characterisation of 17 microsatellite loci for the red-billed chough
(Pyrrhocorax pyrrhocorax, Corvidae). Sixteen loci were polymorphic in 269 individuals from across
Western Europe, with a mean allele number of 8.75 ± 3.73 SD. Observed (HO) and expected (HE)
heterozygosity ranged from 0.11 to 0.71 and 0.15 to 0.70, respectively. No evidence was found for null-
alleles or linkage-disequilibrium. Cross-species utility was tested on 15 Alpine choughs (Pyrrhocorax
graculus) and five jackdaws (Corvus monedula). Sixteen loci amplified for Alpine chough and fifteen
loci amplified for jackdaw, indicating useful application within and beyond the Pyrrhocorax genus.

The red-billed chough (Pyrrhocorax pyrrhocorax, Corvidae) is amber-listed in the UK and a Species of
European Conservation Concern (Eaton et al 2009), due to a historic decline in population size and
distribution range (Finney and Jardine 2003; Johnstone et al 2007). Whilst much is known about the
ecology of chough populations in the UK and Europe (e.g. Blanco et al 1998; McCanch 2000; Kerbiriou
and Julliard 2007; Reid et al 2003, 2008), hitherto there has been no examination of genetic population
structure to inform an understanding of the extent to which individual populations are demographically
independent units. We describe 17 microsatellite loci to facilitate analysis of genetic diversity within, and
genetic divergence between, European chough populations. We further examine the utility of these loci
for molecular studies of related taxa within the Pyrrhocorax genus.

Microsatellite loci were isolated using a magnetic bead capture enrichment approach according to
Glenn and Schable (2005). Approximately 2 µg of total DNA was extracted from five pooled female indi-
viduals using a DNeasy Blood and Tissue Kit (Qiagen Ltd) according to the manufacturer’s instructions.
The DNA was restricted with 5U RsaI (New England Biolabs) at 37 °C for 1 hour. Fragments were
ligated to the double-stranded SuperSNX24 linker (Glenn and Schable 2005) using 1U of T4 DNA ligase
at 4 °C overnight, then hybridised to biotinylated (AACT)8, (AAGT)8, (ACAT)8 and (AGAT)8 oligonu-
cleotides. The microsatellite-enriched fraction was captured with magnetic streptavidin beads (Invitrogen
Ltd), then PCR-amplified using the SuperSNX24 forward oligonucleotide as a primer. PCR products
were cloned using a TOPO-TA Cloning Kit (Invitrogen) according to the manufacturer’s protocol. Clone
insert size was checked by PCR, using standard M13 primers, and those products of between 400 and
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1000 base pairs were purified using the Qiaquick PCR purification kit (Qiagen Ltd) and sequenced using
an ABI 3730 automated DNA sequencer. A total of 56 microsatellite arrays were found, of which 27
contained sufficient flanking sequences for primer design. PCR primers were designed using Primer 3
v0.4.0 (Rozen and Skaletsky 2000).

Seventeen of these pairs yielded a single PCR product of appropriate size when tested. Diversity
was assessed for these loci from 269 individuals from ten sampling locations covering a broad geographic
range (Scotland, Isle of Man, Northern Ireland, Ireland, Wales, England, France and Spain). Cross-species
utility of the loci was tested on 15 individuals of Alpine chough (Pyrrhocorax graculus) from France and
five jackdaws (Corvus monedula) from across Western Europe.

Individual PCRs were performed using the HotStarTaq Plus Mastermix Kit (Qiagen) and a G-Storm
GS1 or MJ Research PTC-100 thermocycler. Reaction volumes were 10µl and contained 1X HotStarTaq
Mastermix (containing 1.5mM MgCl2), 0.8 µM of each primer, 0.2mM of each nucleotide and 5-100 ng
of template DNA. An initial denaturation step of 5min at 95 ºC was followed by 20 TouchDown cycles
from 65 ºC to 55 ºC in 0.5 ºC decrements (denaturation at 95 ºC for 30 s, annealing for 30 s, elongation
at 72 ºC for 30 s) (see Table 1 for exceptions). The programme was completed with 15 standard cycles
(denaturation at 95 ºC for 30 s, annealing at 55 ºC for 30 s, elongation at 72 ºC for 30 s) and a final
elongation step at 72 ºC for 5min. Forward primers were labelled with either 6-FAM, HEX, NED or
PET fluorescent labels, and the PCR products were genotyped on an automatic ABI 3730 capillary
DNA sequencer (Sequencing Service, University of Dundee, UK). Genotypes were scored by eye using
the software genemarker 1.4 (SoftGenetics 2010).

Sixteen out of seventeen loci were polymorphic. Allele numbers ranged from three (locus Ppy-015)
to fourteen (loci Ppy-010 and Ppy-016) with a mean of 8.75 ± 3.73 SD (Table 1). Observed (HO) and
expected (HE) heterozygosity were calculated using genalex 6.4 (Peakall and Smouse 2006) and ranged
from 0.11 to 0.71 and 0.15 to 0.70, respectively (Table 1). The software genepop 4.0.10 (Raymond
and Rousset 1995; Rousset 2008) reported significant deviations from Hardy-Weinberg equilibrium (α =
0.05) in loci Ppy-003, Ppy-007, Ppy-008, Ppy-011, Ppy-012, Ppy-015 and Ppy-016. The presence of null
alleles was examined using microchecker 2.2.3 (van Oosterhout et al 2004). Whilst there was some
evidence of deviation from Hardy-Weinberg equilibrium caused by heterozygote deficiency at some loci,
this was not consistent across sampling locations, suggesting its occurrence was not due to null alleles.
Using genepop, significant linkage disequilibrium (α = 0.05) was detected for 53 out of 136 possible
loci combinations pooled from all sampling locations (= 39%), but inconsistent occurrence of significant
deviation across sampling locations suggests that the cases of deviation from linkage equilibrium are not
due to physical linkage. The probability that two unrelated individuals drawn at random from the dataset
will have the same genotype (probability of identity) was calculated in gimlet 1.3.3 (Valiere 2002) and
decreased from 8.241 · 10−2 (most informative locus Ppy-007) to 3.100 · 10−10 (all sixteen loci), indicating
a high power of discrimination between individuals.

Sixteen out of the seventeen primer pairs produced scorable amplification products of equivalent size
in the Alpine chough samples, and fifteen loci also amplified in the jackdaw samples (Table 2). PCR
failure was increased in the tested Alpine choughs and even more so in the jackdaws, possibly due to
mutations in the primer annealing sites (Jarne and Lagoda 1996; Galbusera et al 2000).
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Table 2: Cross-species utility of 17 microsatellite loci developed for red-billed chough. The number of
alleles at each locus are given for 269 individuals of red-billed chough (Pyrrhocorax pyrrhocorax), 15
Alpine choughs (Pyrrhocorax graculus) and 5 jackdaws (Corvus monedula).

Locus Na P. pyrrhocorax Na P. graculus Na C. monedula

Ppy-001 5 8 4
Ppy-002 4 6 1
Ppy-003 11 6 2
Ppy-004 8 3 4
Ppy-005 6 9 4
Ppy-006 8 7 3
Ppy-007 13 9 5
Ppy-008 12 6 2
Ppy-009 5 2 1
Ppy-010 14 – –
Ppy-011 10 13 2
Ppy-012 12 8 1
Ppy-013 10 10 6
Ppy-014 5 11 3
Ppy-015 3 5 3
Ppy-016 14 6 –
Ppy-017 1 9 1

Mean ± SD 8.29 ± 4.07 6.94 ± 3.29 2.47 ± 1.74

(France), Eric, Sue and Caitlin Bignal, Davy McCracken and Maria Bogdanova (Islay, Scotland), David
Jardine and Mike Peacock (Colonsay, Scotland), Adrienne Stratford and Tony Cross (North Wales &
England), Mike Trewby (Ireland), Allen Moore & Chris Sharpe (Isle of Man), and acknowledge the work
of DNA Sequencing & Services (MRCPPU, College of Life Sciences, University of Dundee, Scotland,
www.dnaseq.co.uk).
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