56,268 research outputs found
A Unified Gravity-Electroweak Model Based on a Generalized Yang-Mills Framework
Gravitational and electroweak interactions can be unified in analogy with the
unification in the Weinberg-Salam theory. The Yang-Mills framework is
generalized to include space-time translational group T(4), whose generators
T_{\mu}(=\p/\p x^{\mu}) do not have constant matrix representations. By
gauging in flat space-time, we have a new
tensor field which universally couples to all particles and
anti-particles with the same constant , which has the dimension of length.
In this unified model, the T(4) gauge symmetry dictates that all wave equations
of fermions, massive bosons and the photon in flat space-time reduce to a
Hamilton-Jacobi equation with the same `effective Riemann metric tensor' in the
geometric-optics limit. Consequently, the results are consistent with
experiments. We demonstrated that the T(4) gravitational gauge field can be
quantized in inertial frames.Comment: 12 pages. To be published in "Modern Physics Letters A
Crude oil desulfurization
High sulfur crude oil is desulfurized by a low temperature (25-80 C.) chlorinolysis at ambient pressure in the absence of organic solvent or diluent but in the presence of water (water/oil=0.3) followed by a water and caustic wash to remove sulfur and chlorine containing reaction products. The process described can be practiced at a well site for the recovery of desulfurized oil used to generate steam for injection into the well for enhanced oil recovery
Recommended from our members
Shadow Banking and Systemic Risk in Europe and China
We compare the European and Chinese shadow banking systems. While the European shadow banking system is better developed than the Chinese shadow banking system, herd behavior and other factors in European markets create systemic risk, which contributed in part to the financial crisis. Dispersion of risk across the "under-developed" shadow banking system in China has led to some cases of localized, concentrated risk, but not to systemic risk. We discuss proposed European shadow banking regulation and its implications for systemic risk, and discuss what lessons China might glean from such policies. We also discuss what lessons
China's diverse and systemically uncoordinated shadow banking sector might provide for Europe
Recommended from our members
The costs and benefits of secured creditor control in bankruptcy: evidence from the UK
To improve model soil moisture estimation in arid/semi-arid region using in situ and remote sensing information
Soil moisture plays a key role in water and energy exchange in the land hydrologic process. Effective soil moisture information can be used for many applications in weather and hydrological forecasting, water resources, and irrigation system management and planning. However, to accurate modeling of soil moisture variation in the soil layer is still very challenging. In this study, in situ and remote sensing information of near-surface soil moisture is assimilated into the Noah land surface model (LSM) to estimate deep-layer soil moisture variation. The sequential Monte Carlo-Particle Filter technique, being well known for capability of modeling high nonlinear and non-Gaussian processes, is applied to assimilate surface soil moisture measurement to the deep layers. The experiments were carried out over several locations over the semi-arid region of the US. Comparing with in situ observations, the assimilation runs show much improved from the control (non-assimilation) runs for estimating both soil moisture and temperature at 5-, 20-, and 50-cm soil depths in the Noah LSM. © 2012 Springer-Verlag
Anomaly induced QCD potential and Quark Decoupling
We explore the anomaly induced effective QCD meson potential in the framework
of the effective Lagrangian approach. We suggest a decoupling procedure, when a
flavored quark becomes massive, which mimics the one employed by Seiberg for
supersymmetric gauge theories. It is seen that, after decoupling, the QCD
potential naturally converts to the one with one less flavor. We study the
and dependence of the mass.Comment: 11 pages, RevTe
An object-based approach for verification of precipitation estimation
Verification has become an integral component in the development of precipitation algorithms used in satellite-based precipitation products and evaluation of numerical weather prediction models. A number of object-based verification methods have been developed to quantify the errors related to spatial patterns and placement of precipitation. In this study, an image processing technique known as watershed transformation, capable of detecting closely spaced, but separable precipitation areas, is adopted in the object-based approach. Several key attributes of the segmented precipitation objects are selected and interest values of those attributes are estimated based on the distance measurement of the estimated and reference images. An overall interest score is estimated from all the selected attributes and their interest values. The proposed object-based approach is implemented to validate satellite-based precipitation estimation against ground radar observations. The results indicate that the watershed segmentation technique is capable of separating the closely spaced local-scale precipitation areas. In addition, three verification metrics, including the object-based false alarm ratio, object-based missing ratio, and overall interest score, reveal the skill of precipitation estimates in depicting the spatial and geometric characteristics of the precipitation structure against observations
- …