392 research outputs found

    Effect of soil on the mutagenic properties of waste water

    Get PDF
    The disposal of complex mixtures such as waste water on agricultural lands poses known and unknown environmental risks. Mutagens may be introduced into the eco-system and perhaps concentrated by crop plants or leached into ground water supplies. The purpose of this study was to determine the biological effect of a mutagenic waste water before and after application to soil. We used an XAD-8 methanol extract of waste water from the municipal sewage treatment facility at Sauget IL. This extract was a potent direct acting mutagen when assayed with the Salmonella typhimurium. 1 and 3 ml of extract were brought up to 10 ml volumes with water and added to 10 a of sterile or nonsterile , native clay loam. These mixtures were placed in a shaking water bath at room temperature for 0, 24, and 48 h. After separation of solid and liquid portions by filtration, dichloromethane was added to extract the organic fractions from each component. Solvent extractions were evaporated to dryness under vacuum and brought up in DMSO. Tests for mutagenic activity were conducted using strain TA98. After addition to the soil for greater periods of time the mutagenic activity decreased. The solid component exhibited greater mutagenic activity than the liquid. The XAD-8 extract was also assayed using the yg2 assay in Zea mays and the micronucleus assay in Tradescantia. The extract did not induce mutation or chromosome aberrations in these assays. The sludge from the Sauqet plant was chemically fractionated and assayed with S. typhimurium strains TA98 and TA100. The neutral fraction was the most mutagenic fraction followed by the weak acid,-strong acid and basic fractions. These chemical fractions uncovered more mutagenic potency than was predicted by assaying a crude organic extract of the sludge.U.S. Department of the InteriorU.S. Geological SurveyOpe

    Laboratory and Field Testing of an Automated Atmospheric Particle-Bound Reactive Oxygen Species Sampling-Analysis System

    Get PDF
    In this study, various laboratory and field tests were performed to develop an effective automated particle-bound ROS sampling-analysis system. The system uses 2′ 7′-dichlorofluorescin (DCFH) fluorescence method as a nonspecific, general indicator of the particle-bound ROS. A sharp-cut cyclone and a particle-into-liquid sampler (PILS) were used to collect PM2.5 atmospheric particles into slurry produced by a DCFH-HRP solution. The laboratory results show that the DCFH and H2O2 standard solutions could be kept at room temperature for at least three and eight days, respectively. The field test in Rochester, NY, shows that the average ROS concentration was 8.3 ± 2.2 nmol of equivalent H2O2 m−3 of air. The ROS concentrations were observed to be greater after foggy conditions. This study demonstrates the first practical automated sampling-analysis system to measure this ambient particle component

    ABHD5 frameshift deletion in Golden Retrievers with ichthyosis.

    Get PDF
    Ichthyoses are hereditary skin disorders characterized by the formation of scales and defects in the outermost layer of the epidermis. In dogs, at least six different breed-specific ichthyoses including a relatively common PNPLA1-related autosomal recessive ichthyosis in Golden Retrievers are known. In this study, we investigated 14 Golden Retrievers with scales that were not homozygous for the mutant PNPLA1 allele suggesting a genetically distinct new form of ichthyosis. Histopathological examinations showed lamellar, orthokeratotic hyperkeratosis, and mildly hyperplastic epidermis that led to the diagnosis of a nonepidermolytic ichthyosis. Combined linkage and homozygosity mapping in 14 cases and 30 nonaffected family members delimited a critical interval of ∼12.7 Mb on chromosome 23. Whole-genome sequencing of an affected dog revealed a single protein-changing variant within this region that was not present in 795 control genomes. The identified variant is a 14 bp deletion in the ABHD5 gene (c.1006_1019del), leading to a frameshift and altering the last 14 codons p.(Asp336Serfs*6). The genotypes at this variant showed perfect cosegregation with the ichthyosis phenotype in a large family comprising 14 cases and 72 controls. ABHD5 encodes an acyltransferase required for lipid metabolism. In humans, variants in ABHD5 cause Chanarin-Dorfman syndrome, a neutral lipid storage disease with ichthyosis. Our data in dogs together with the knowledge on the effects of ABHD5 variants in humans strongly suggest ABHD5:c.1006_1019del as candidate causative genetic variant for a new canine form of ichthyosis, which we propose to designate as Golden Retriever ichthyosis type 2 (ICH2)

    Airborne particulate matter in Tehran�s ambient air

    Get PDF
    In recent decades, particulate matter (PM) concentrations in Tehran have exceeded the World Health Organization�s (WHO) guideline on most days. In this study, a search protocol was defined by identifying the keywords, to carry out a systematic review of the concentrations and composition of PM in Tehran�s ambient air. For this purpose, searches were done in Scopus, PubMed, and Web of Science in 2019. Among the founded articles (197 in Scopus, 61 in PubMed, and 153 in Web of Science). The results show that in Tehran, the annual average PM10 exceeded the WHO guidelines and for more than 50.0 of the days, the PM2.5 concentration was more than WHO 24-h guidance value. The PM concentration in Tehran has two seasonal peaks due to poorer dispersion and suspension from dry land, respectively. Tehran has two daily PM peaks due to traffic and changes in boundary-layer heights; one just after midnight and the other during morning rush hour. Indoor concentrations of PM10 and PM2.5 in Tehran were 10.6 and 21.8 times higher than the corresponding values in ambient air. Tehran represents a unique case of problems of controlling PM because of its geographical setting, emission sources, and land use. This review provided a comprehensive assessment for decision makers to assist them in making appropriate policy decisions to improve the air quality. Considering factors such as diversity of resources, temporal and spatial variations, and urban location is essential in developing control plans. Also future studies should focus more on PM reduction plans. © 2021, Springer Nature Switzerland AG

    Quantifying primary and secondary humic-like substances in urban aerosol based on emission source characterization and a source-oriented air quality model

    Get PDF
    Humic-like substances (HULIS) are a mixture of high-molecular-weight, water-soluble organic compounds that are widely distributed in atmospheric aerosol. Their sources are rarely studied quantitatively. Biomass burning is generally accepted as a major primary source of ambient humic-like substances (HULIS) with additional secondary material formed in the atmosphere. However, the present study provides direct evidence that residential coal burning is also a significant source of ambient HULIS, especially in the heating season in northern China based on source measurements, ambient sampling and analysis, and apportionment with source-oriented CMAQ modeling. Emission tests show that residential coal combustion produces 5&thinsp;% to 24&thinsp;% of the emitted organic carbon (OC) as HULIS carbon (HULISc). Estimation of primary emissions of HULIS in Beijing indicated that residential biofuel and coal burning contribute about 70&thinsp;% and 25&thinsp;% of annual primary HULIS, respectively. Vehicle exhaust, industry, and power plant contributions are negligible. The average concentration of ambient HULIS in PM2.5 was 7.5&thinsp;µg&thinsp;m−3 in urban Beijing and HULIS exhibited obvious seasonal variations with the highest concentrations in winter. HULISc accounts for 7.2&thinsp;% of PM2.5 mass, 24.5&thinsp;% of OC, and 59.5&thinsp;% of water-soluble organic carbon. HULIS are found to correlate well with K+, Cl−, sulfate, and secondary organic aerosol, suggesting its sources include biomass burning, coal combustion, and secondary aerosol formation. Source apportionment based on CMAQ modeling shows residential biofuel and coal burning and secondary formation are important sources of ambient HULIS, contributing 47.1&thinsp;%, 15.1&thinsp;%, and 38.9&thinsp;%, respectively.</p

    Associations between Source-Specific Particulate Matter and Respiratory Infections in New York State Adults

    Get PDF
    The response of respiratory infections to source-specific particulate matter (PM) is an area of active research. Using source-specific PM2.5 concentrations at six urban sites in New York State, a case-crossover design, and conditional logistic regression, we examined the association between source-specific PM and the rate of hospitalizations and emergency department (ED) visits for influenza or culture-negative pneumonia from 2005 to 2016. There were at most N = 14 764 influenza hospitalizations, N = 57 522 influenza ED visits, N = 274 226 culture-negative pneumonia hospitalizations, and N = 113 997 culture-negative pneumonia ED visits included in our analyses. We separately estimated the rate of respiratory infection associated with increased concentrations of source-specific PM2.5, including secondary sulfate (SS), secondary nitrate (SN), biomass burning (BB), pyrolyzed organic carbon (OP), road dust (RD), residual oil (RO), diesel (DIE), and spark ignition vehicle emissions (GAS). Increased rates of ED visits for influenza were associated with interquartile range increases in concentrations of GAS (excess rate [ER] = 9.2%; 95% CI: 4.3%, 14.3%) and DIE (ER = 3.9%; 95% CI: 1.1%, 6.8%) for lag days 0-3. There were similar associations between BB, SS, OP, and RO, and ED visits or hospitalizations for influenza, but not culture-negative pneumonia hospitalizations or ED visits. Short-term increases in PM2.5 from traffic and other combustion sources appear to be a potential risk factor for increased rates of influenza hospitalizations and ED visits

    Changes in the hospitalization and ED visit rates for respiratory diseases associated with source-specific PM2.5 in New York State from 2005 to 2016

    Get PDF
    Prior work found increased rates for emergency department (ED) visits for asthma and hospitalizations for chronic obstructive pulmonary disease per unit mass of PM2.5 across New York State (NYS) during 2014–2016 after significant reductions in ambient PM2.5 concentrations had occurred following implementation of various policy actions and major economic disruptions. The associations of source-specific PM2.5 concentrations with these respiratory diseases were assessed with a time-stratified case-cossover design and logistic regression models to identify the changes in the PM2.5 that have led to the apparently increased toxicity per unit mass. The rates of ED visits and hospitalizations for asthma and COPD associated with increases in source-specific PM2.5 concentrations in the prior 1, 4, and 7 days were estimated for 6 urban sites in New York State. Overall, there were similar numbers of significantly increased (n = 9) and decreased rates (n = 8) of respiratory events (asthma and COPD hospitalizations and ED visits) associated with increased source-specific PM2.5 concentrations in the previous 1, 4, and 7 days. Associations of source-specific PM2.5 concentrations with excess rates of hospitalizations for COPD for spark- and compression ignition vehicles increased in the 2014–2016 period, but the values were not statistically significant. Other source types showed inconsistent patterns of excess rates. For asthma ED visits, only biomass burning and road dust showed consistent positive associations with road dust having significant values for most lag times. Secondary nitrate also showed significant positive associations with asthma ED visits in the AFTER period compared to no associations in the prior periods. These results suggest that the relationships of asthma and COPD exacerbation with source-specific PM2.5 are not well defined and further work will be needed to determine the causes of the apparent increases in the per unit mass toxicity of PM2.5 in New York State in the 2014-16 period

    Differential adaptation of Candida albicans in vivo modulates immune recognition by dectin-1

    Get PDF
    Author Summary Dectin-1 is a pattern recognition receptor recognising the fungal cell-wall component, β-glucan, and plays an essential role in controlling C. albicans infections in both mouse and man. Candida albicans is part of the normal human microflora, yet is capable of causing superficial mucosal infections as well as life-threatening invasive diseases, particularly in patients whose immune function is compromised. Here we found that the contribution of Dectin-1 is limited to specific strains of C. albicans ; effects which are due to the differential adaptation of these pathogens during infection. Importantly, C. albicans strains showed variations in both the composition and nature of their cell walls, and it was these differences which influenced the role of Dectin-1. Crucially, we found that we could alter the fungal cell wall, and subsequent interactions with the host, using antifungal drugs. These findings have substantial implications for our understanding of the factors contributing to human susceptibility to infections with C. albicans , but also treatment strategies
    corecore