59 research outputs found

    Design of LTCC-based Ceramic Structure for Chemical Microreactor

    Get PDF
    The design of ceramic chemical microreactor for the production of hydrogen needed in portable polymer-electrolyte membrane (PEM) fuel cells is presented. The microreactor was developed for the steam reforming of liquid fuels with water into hydrogen. The complex three-dimensional ceramic structure of the microreactor includes evaporator(s), mixer(s), reformer and combustor. Low-temperature co-fired ceramic (LTCC) technology was used to fabricate the ceramic structures with buried cavities and channels, and thick-film technology was used to make electrical heaters, temperature sensors and pressure sensors. The final 3D ceramic structure consists of 45 LTCC tapes. The dimensions of the structure are 75 × 41 × 9 mm3 and the weight is about 73 g

    Mechanochemical synthesis of NaNbO3, KNbO3 and K0.5Na0.5NbO3

    Get PDF
    Mechanochemical synthesis of the K0.5Na0.5NbO3 solid solution (KNN) is studied. In order to explore the mechanochemical interactions between the constituents in the Na2CO3 - K2CO3 - Nb2O5 system, NaNbO3 and KNbO3 as the boundary compositions of the KNN solid solution are also studied. It has been shown that NaNbO3 can be prepared by a single-step mechanochemical synthesis, while in the case of K2CO3 and Nb2O5, and Na2CO3, K2CO3 and Nb2O5 mixtures, only amorphisation occurs even after prolonged milling

    Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    Full text link
    We have grown lead iron niobate thin films with composition Pb(Fe1/2Nb1/2)O3 (PFN) on (0 0 1) SrTiO3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM<0.09). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.Comment: 13 Pages, 6 figures. To be published in J. Mag. Mag Mater. proceedings of EMRS200

    Spin-lattice coupling in multiferroic Pb(Fe1/2Nb1/2)O3 thin films

    Full text link
    We have made magnetization and x-ray diffraction measurements on an epitaxial Pb(Fe1/2Nb1/2)O3 200 nm film. From the temperature dependence of the out-of-plane lattice parameter we can assign a Burns' temperature at Td ~ 640 K, a temperature at T* ~ 510 K, related to the appearance of static polar nanoregions, and an anomaly occurring at 200 K. The latter is precisely the N\'eel temperature TN determined from magnetization and points to spin-lattice coupling at TN ~ 200 K. We also observe "weak ferromagnetism" up to 300K and propose superantiferromagnetic clusters as a plausible scenario to explain this hysteresis above TN.Comment: 12 pages, 4 figure

    Photoinduced IR absorption in (La(1-x)Sr(x)Mn)(1-\delta)O3: changes of the anti-Jahn-Teller polaron binding energy with doping

    Full text link
    Photoinduced IR absorption was measured in (La(1-x)Sr(x)Mn)(1-\delta)O3. A midinfrared peak centered at ~ 5000 cm1^{-1} was observed in the x=0 antiferromagnetic sample. The peak diminishes and softens as hole doping is increased. The origin of the photoinduced absorption peak is atributted to the photon assisted hopping of anti-Jahn-Teller polarons formed by photoexcited charge carriers, whose binding energy decreases with increasing hole doping. The shape of the peak indicates that the polarons are small.Comment: 5 pages, 3 figures, submitted to PR

    Molecular redox species for next-generation batteries

    Get PDF
    This Tutorial Review describes how the development of dissolved redox-active molecules is beginning to unlock the potential of three of the most promising ‘next-generation’ battery technologies – lithium–air, lithium–sulfur and redox-flow batteries. Redox-active molecules act as mediators in lithium–air and lithium–sulfur batteries, shuttling charge between electrodes and substrate systems and improving cell performance. In contrast, they act as the charge-storing components in flow batteries. However, in each case the performance of the molecular species is strongly linked to their solubility, electrochemical and chemical stability, and redox potentials. Herein we describe key examples of the use of redox-active molecules in each of these battery technologies and discuss the challenges and opportunities presented by the development and use of redox-active molecules in these applications. We conclude by issuing a “call to arms” to our colleagues within the wider chemical community, whose synthetic, computational, and analytical skills can potentially make invaluable contributions to the development of next-generation batteries and help to unlock of world of potential energy-storage applications

    2021 roadmap on lithium sulfur batteries

    Get PDF
    Batteries that extend performance beyond the intrinsic limits of Li-ion batteries are among the most important developments required to continue the revolution promised by electrochemical devices. Of these next-generation batteries, lithium sulfur (Li–S) chemistry is among the most commercially mature, with cells offering a substantial increase in gravimetric energy density, reduced costs and improved safety prospects. However, there remain outstanding issues to advance the commercial prospects of the technology and benefit from the economies of scale felt by Li-ion cells, including improving both the rate performance and longevity of cells. To address these challenges, the Faraday Institution, the UK's independent institute for electrochemical energy storage science and technology, launched the Lithium Sulfur Technology Accelerator (LiSTAR) programme in October 2019. This Roadmap, authored by researchers and partners of the LiSTAR programme, is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the LiSTAR consortium. In compiling this Roadmap we hope to aid the development of the wider Li–S research community, providing a guide for academia, industry, government and funding agencies in this important and rapidly developing research space

    2021 roadmap on lithium sulfur batteries

    Get PDF
    Abstract: Batteries that extend performance beyond the intrinsic limits of Li-ion batteries are among the most important developments required to continue the revolution promised by electrochemical devices. Of these next-generation batteries, lithium sulfur (Li–S) chemistry is among the most commercially mature, with cells offering a substantial increase in gravimetric energy density, reduced costs and improved safety prospects. However, there remain outstanding issues to advance the commercial prospects of the technology and benefit from the economies of scale felt by Li-ion cells, including improving both the rate performance and longevity of cells. To address these challenges, the Faraday Institution, the UK’s independent institute for electrochemical energy storage science and technology, launched the Lithium Sulfur Technology Accelerator (LiSTAR) programme in October 2019. This Roadmap, authored by researchers and partners of the LiSTAR programme, is intended to highlight the outstanding issues that must be addressed and provide an insight into the pathways towards solving them adopted by the LiSTAR consortium. In compiling this Roadmap we hope to aid the development of the wider Li–S research community, providing a guide for academia, industry, government and funding agencies in this important and rapidly developing research space

    Impact of band structure and absorber dynamics on self-Q-switching in GaN-based multisection laser diodes at high reverse bias

    No full text
    Self-Q-switching in GaN-based multisection laser diodes (MS-LDs) is investigated. The influence of the absorption on threshold currents and charge carrier lifetimes in the absorber section are measured and discussed in the context of the band structure at high reverse bias. Our system employs a bowtie geometry, i.e., with the absorber section positioned in the center of the laser cavity and a tapered shape of the laser ridge. The shortest pulses were in the 10 picosecond range, obtained at a constant reverse bias of 36 V applied to the absorber section, the gain section was driven at 0.57 A. The emission wavelength was around 405 nm
    corecore