421 research outputs found

    TESTING THE UTILITY OF ENVIRONMENTAL CLUSTER ANALYSIS BASED UPON BIODIVERSITY SURROGATES WITHIN GEOGRAPHIC INFORMATION SYSTEMS FOR CONSERVATION PLANNING: A CASE STUDY OF INLAND TEMPERATE RAINFOREST IN THE NORTHERN ROCKY MOUNTAINS

    Get PDF
    Environmental surrogates have been proposed as a method for addressing a lack of taxonomic data in biodiversity conservation planning. These surrogates, used as variables in Geographic Information Systems (GIS) analysis, can be used in classification procedures to classify areas that are hypothesized to support or be able to support a targeted species or community. The peripheral range of the inland temperate rainforest’s (ITRF) in northwest Montana and northern Idaho was used as a case study for testing the utility of a method known as Environmental Cluster Analysis (ECA) within a GIS using abiotic environmental variables encompassing broad environmental attributes to classify this forest type. The objective was to test if this statistical clustering classification identified sites that contained or could accommodate this forest type and thus contribute to biodiversity planning in the Northern Rocky Mountains. Results indicate that the generalizing nature of ECA is not suitable for meeting the objectives of many conventional biodiversity goals when emphasis is placed on the limited distribution species or communities. The results from this research support the conclusion that ECA is not adequate for formulating a strategy for developing and implementing ITRF conservation planning

    THERMODYNAMIC PROPERTIES TO 6000 DEG K FOR 210 SUBSTANCES INVOLVING THE FIRST 18 ELEMENTS

    Get PDF
    Thermodynamic properties to 6000-deg kelvin for substances involving first 18 elements in their natural stat

    Dynamical Solution of the On-Line Minority Game

    Full text link
    We solve the dynamics of the on-line minority game, with general types of decision noise, using generating functional techniques a la De Dominicis and the temporal regularization procedure of Bedeaux et al. The result is a macroscopic dynamical theory in the form of closed equations for correlation- and response functions defined via an effective continuous-time single-trader process, which are exact in both the ergodic and in the non-ergodic regime of the minority game. Our solution also explains why, although one cannot formally truncate the Kramers-Moyal expansion of the process after the Fokker-Planck term, upon doing so one still finds the correct solution, that the previously proposed diffusion matrices for the Fokker-Planck term are incomplete, and how previously proposed approximations of the market volatility can be traced back to ergodicity assumptions.Comment: 25 pages LaTeX, no figure

    The Role of GABAergic Inhibition in Ocular Dominance Plasticity

    Get PDF
    During the last decade, we have gained much insight into the mechanisms that open and close a sensitive period of plasticity in the visual cortex. This brings the hope that novel treatments can be developed for brain injuries requiring renewed plasticity potential and neurodevelopmental brain disorders caused by defective synaptic plasticity. One of the central mechanisms responsible for opening the sensitive period is the maturation of inhibitory innervation. Many molecular and cellular events have been identified that drive this developmental process, including signaling through BDNF and IGF-1, transcriptional control by OTX2, maturation of the extracellular matrix, and GABA-regulated inhibitory synapse formation. The mechanisms through which the development of inhibitory innervation triggers and potentially closes the sensitive period may involve plasticity of inhibitory inputs or permissive regulation of excitatory synapse plasticity. Here, we discuss the current state of knowledge in the field and open questions to be addressed

    Dynamics of adaptive agents with asymmetric information

    Full text link
    We apply path-integral techniques to study the dynamics of agent-based models with asymmetric information structures. In particular, we devise a batch version of a model proposed originally by Berg et al. [Quant. Fin. 1 (2001) 203], and convert the coupled multi-agent processes into an effective-agent problem from which the dynamical order parameters in ergodic regimes can be derived self-consistently together with the corresponding phase structure. Our dynamical study complements and extends the available static theory. Results are confirmed by numerical simulations.Comment: minor revision of text, accepted by JSTA

    The SPF27 Homologue Num1 Connects Splicing and Kinesin 1-Dependent Cytoplasmic Trafficking in Ustilago maydis

    Get PDF
    The conserved NineTeen protein complex (NTC) is an integral subunit of the spliceosome and required for intron removal during pre-mRNA splicing. The complex associates with the spliceosome and participates in the regulation of conformational changes of core spliceosomal components, stabilizing RNA-RNA- as well as RNA-protein interactions. In addition, the NTC is involved in cell cycle checkpoint control, response to DNA damage, as well as formation and export of mRNP-particles. We have identified the Num1 protein as the homologue of SPF27, one of NTC core components, in the basidiomycetous fungus Ustilago maydis. Num1 is required for polarized growth of the fungal hyphae, and, in line with the described NTC functions, the num1 mutation affects the cell cycle and cell division. The num1 deletion influences splicing in U. maydis on a global scale, as RNA-Seq analysis revealed increased intron retention rates. Surprisingly, we identified in a screen for Num1 interacting proteins not only NTC core components as Prp19 and Cef1, but several proteins with putative functions during vesicle-mediated transport processes. Among others, Num1 interacts with the motor protein Kin1 in the cytoplasm. Similar phenotypes with respect to filamentous and polar growth, vacuolar morphology, as well as the motility of early endosomes corroborate the genetic interaction between Num1 and Kin1. Our data implicate a previously unidentified connection between a component of the splicing machinery and cytoplasmic transport processes. As the num1 deletion also affects cytoplasmic mRNA transport, the protein may constitute a novel functional interconnection between the two disparate processes of splicing and trafficking

    Breakdown of the mirror image symmetry in the optical absorption/emission spectra of oligo(para-phenylene)s

    Get PDF
    The absorption and emission spectra of most luminescent, pi-conjugated, organic molecules are the mirror image of each other. In some cases, however, this symmetry is severely broken. In the present work, the asymmetry between the absorption and fluorescence spectra in molecular systems consisting of para-linked phenyl rings is studied. The vibronic structure of the emission and absorption bands is calculated from ab-initio quantum chemical methods and a subsequent, rigorous Franck-Condon treatment. Good agreement with experiment is achieved. A clear relation can be established between the strongly anharmonic double-well potential for the phenylene ring librations around the long molecular axis and the observed deviation from the mirror image symmetry. Consequences for related compounds and temperature dependent optical measurements are also discussed.Comment: 12 pages, 13 Figure

    Adaptive drivers in a model of urban traffic

    Full text link
    We introduce a simple lattice model of traffic flow in a city where drivers optimize their route-selection in time in order to avoid traffic jams, and study its phase structure as a function of the density of vehicles and of the drivers' behavioral parameters via numerical simulations and mean-field analytical arguments. We identify a phase transition between a low- and a high-density regime. In the latter, inductive drivers may surprisingly behave worse than randomly selecting drivers.Comment: 7 pages, final versio

    The zona incerta in control of novelty seeking and investigation across species

    Get PDF
    Many organisms rely on a capacity to rapidly replicate, disperse, and evolve when faced with uncertainty and novelty. But mammals do not evolve and replicate quickly. They rely on a sophisticated nervous system to generate predictions and select responses when confronted with these challenges. An important component of their behavioral repertoire is the adaptive context-dependent seeking or avoiding of perceptually novel objects, even when their values have not yet been learned. Here, we outline recent cross-species breakthroughs that shed light on how the zona incerta (ZI), a relatively evolutionarily conserved brain area, supports novelty-seeking and novelty-related investigations. We then conjecture how the architecture of the ZI\u27s anatomical connectivity - the wide-ranging top-down cortical inputs to the ZI, and its specifically strong outputs to both the brainstem action controllers and to brain areas involved in action value learning - place the ZI in a unique role at the intersection of cognitive control and learning

    Random replicators with asymmetric couplings

    Full text link
    Systems of interacting random replicators are studied using generating functional techniques. While replica analyses of such models are limited to systems with symmetric couplings, dynamical approaches as presented here allow specifically to address cases with asymmetric interactions where there is no Lyapunov function governing the dynamics. We here focus on replicator models with Gaussian couplings of general symmetry between p>=2 species, and discuss how an effective description of the dynamics can be derived in terms of a single-species process. Upon making a fixed point ansatz persistent order parameters in the ergodic stationary states can be extracted from this process, and different types of phase transitions can be identified and related to each other. We discuss the effects of asymmetry in the couplings on the order parameters and the phase behaviour for p=2 and p=3. Numerical simulations verify our theory. For the case of cubic interactions numerical experiments indicate regimes in which only a finite number of species survives, even when the thermodynamic limit is considered.Comment: revised version, removed some mathematical parts, discussion of negatively correlated couplings added, figures adde
    corecore