186 research outputs found
Pathophysiological changes occurring during Escherichia coli endotoxin and Pasteurella multocida challenge in piglets: relationship with cough and temperature and predicitive value for intensity of lesions.
The aims of this study were (1) to correlate cough and body temperature (BT) with the severity of bronchopneumonia in pigs, (2) to determine whether these clinical signs can be used to early diagnose bronchopneumonia and (3) to assess the predictive values of cough and BT regarding lung lesions. Bronchopneumonia was induced by administering E. coli endotoxin (LPS) combined with Pasteurella multocida type A (PmA) in the trachea of 13 piglets. Saline-instilled negative controls (n = 8), PmA inoculated (n = 6) and LPS instilled (n = 5) groups were also constituted. Cough and BT were recorded daily while the bronchopneumonia severity was assessed using bronchoalveolar lavage fluid (BALF) cytology, cytokines and measurement of lung lesion volume. Changes in expiratory breathing pattern were also measured (Penh). The combination of LPS and PmA induced a subacute bronchopneumonia characterised by macrophage, neutrophil, and lymphocyte infiltration, changes in Penh and an increase in the mRNA level of IFN-gamma while IL8, IL-18 and TNF-alpha mRNA levels remained unchanged. The daily body weight gain of infected animals was significantly reduced. Cough and BT changes were proportional to the intensity of the lung inflammatory process, functional respiratory changes and to the extent of macroscopic lesions. When comparing the individual values of cough and BT to thresholds defined for both parameters, an early diagnosis of pneumonia was possible. Considering the pooled data of each group, it was possible to define thresholds allowing an early segregation between the groups of diseased and healthy piglets. The daily values of cough and BT were predictive for the volume of lung lesions recorded at the end of the trial. In conclusion, cough and BT appear as potential indicators for the intensity and the evolution of the respiratory disease. They also seem to be good predictors for the magnitude of lung lesions and weight gain recorded at the study endpoint
Turing learning: : A metric-free approach to inferring behavior and its application to swarms
We propose Turing Learning, a novel system identification method for
inferring the behavior of natural or artificial systems. Turing Learning
simultaneously optimizes two populations of computer programs, one representing
models of the behavior of the system under investigation, and the other
representing classifiers. By observing the behavior of the system as well as
the behaviors produced by the models, two sets of data samples are obtained.
The classifiers are rewarded for discriminating between these two sets, that
is, for correctly categorizing data samples as either genuine or counterfeit.
Conversely, the models are rewarded for 'tricking' the classifiers into
categorizing their data samples as genuine. Unlike other methods for system
identification, Turing Learning does not require predefined metrics to quantify
the difference between the system and its models. We present two case studies
with swarms of simulated robots and prove that the underlying behaviors cannot
be inferred by a metric-based system identification method. By contrast, Turing
Learning infers the behaviors with high accuracy. It also produces a useful
by-product - the classifiers - that can be used to detect abnormal behavior in
the swarm. Moreover, we show that Turing Learning also successfully infers the
behavior of physical robot swarms. The results show that collective behaviors
can be directly inferred from motion trajectories of individuals in the swarm,
which may have significant implications for the study of animal collectives.
Furthermore, Turing Learning could prove useful whenever a behavior is not
easily characterizable using metrics, making it suitable for a wide range of
applications.Comment: camera-ready versio
Modelling hair follicle growth dynamics as an excitable medium
The hair follicle system represents a tractable model for the study of stem cell behaviour in regenerative adult epithelial tissue. However, although there are numerous spatial scales of observation (molecular, cellular, follicle and multi follicle), it is not yet clear what mechanisms underpin the follicle growth cycle. In this study we seek to address this problem by describing how the growth dynamics of a large population of follicles can be treated as a classical excitable medium. Defining caricature interactions at the molecular scale and treating a single follicle as a functional unit, a minimal model is proposed in which the follicle growth cycle is an emergent phenomenon. Expressions are derived, in terms of parameters representing molecular regulation, for the time spent in the different functional phases of the cycle, a formalism that allows the model to be directly compared with a previous cellular automaton model and experimental measurements made at the single follicle scale. A multi follicle model is constructed and numerical simulations are used to demonstrate excellent qualitative agreement with a range of experimental observations. Notably, the excitable medium equations exhibit a wider family of solutions than the previous work and we demonstrate how parameter changes representing altered molecular regulation can explain perturbed patterns in Wnt over-expression and BMP down-regulation mouse models. Further experimental scenarios that could be used to test the fundamental premise of the model are suggested. The key conclusion from our work is that positive and negative regulatory interactions between activators and inhibitors can give rise to a range of experimentally observed phenomena at the follicle and multi follicle spatial scales and, as such, could represent a core mechanism underlying hair follicle growth
Evolutionary optimisation of neural network models for fish collective behaviours in mixed groups of robots and zebrafish
Animal and robot social interactions are interesting both for ethological
studies and robotics. On the one hand, the robots can be tools and models to
analyse animal collective behaviours, on the other hand, the robots and their
artificial intelligence are directly confronted and compared to the natural
animal collective intelligence. The first step is to design robots and their
behavioural controllers that are capable of socially interact with animals.
Designing such behavioural bio-mimetic controllers remains an important
challenge as they have to reproduce the animal behaviours and have to be
calibrated on experimental data. Most animal collective behavioural models are
designed by modellers based on experimental data. This process is long and
costly because it is difficult to identify the relevant behavioural features
that are then used as a priori knowledge in model building. Here, we want to
model the fish individual and collective behaviours in order to develop robot
controllers. We explore the use of optimised black-box models based on
artificial neural networks (ANN) to model fish behaviours. While the ANN may
not be biomimetic but rather bio-inspired, they can be used to link perception
to motor responses. These models are designed to be implementable as robot
controllers to form mixed-groups of fish and robots, using few a priori
knowledge of the fish behaviours. We present a methodology with multilayer
perceptron or echo state networks that are optimised through evolutionary
algorithms to model accurately the fish individual and collective behaviours in
a bounded rectangular arena. We assess the biomimetism of the generated models
and compare them to the fish experimental behaviours.Comment: 10 pages, 4 figure
Predicting the Distribution of Spiral Waves from Cell Properties in a Developmental-Path Model of Dictyostelium Pattern Formation
The slime mold Dictyostelium discoideum is one of the model systems of biological pattern formation. One of the most successful answers to the challenge of establishing a spiral wave pattern in a colony of homogeneously distributed D. discoideum cells has been the suggestion of a developmental path the cells follow (Lauzeral and coworkers). This is a well-defined change in properties each cell undergoes on a longer time scale than the typical dynamics of the cell. Here we show that this concept leads to an inhomogeneous and systematic spatial distribution of spiral waves, which can be predicted from the distribution of cells on the developmental path. We propose specific experiments for checking whether such systematics are also found in data and thus, indirectly, provide evidence of a developmental path
Risk-Return Relationship in a Complex Adaptive System
For survival and development, autonomous agents in complex adaptive systems involving the human society must compete against or collaborate with others for sharing limited resources or wealth, by using different methods. One method is to invest, in order to obtain payoffs with risk. It is a common belief that investments with a positive risk-return relationship (namely, high risk high return and vice versa) are dominant over those with a negative risk-return relationship (i.e., high risk low return and vice versa) in the human society; the belief has a notable impact on daily investing activities of investors. Here we investigate the risk-return relationship in a model complex adaptive system, in order to study the effect of both market efficiency and closeness that exist in the human society and play an important role in helping to establish traditional finance/economics theories. We conduct a series of computer-aided human experiments, and also perform agent-based simulations and theoretical analysis to confirm the experimental observations and reveal the underlying mechanism. We report that investments with a negative risk-return relationship have dominance over those with a positive risk-return relationship instead in such a complex adaptive systems. We formulate the dynamical process for the system's evolution, which helps to discover the different role of identical and heterogeneous preferences. This work might be valuable not only to complexity science, but also to finance and economics, to management and social science, and to physics
How to Blend a Robot within a Group of Zebrafish: Achieving Social Acceptance through Real-time Calibration of a Multi-level Behavioural Model
We have previously shown how to socially integrate a fish robot into a group
of zebrafish thanks to biomimetic behavioural models. The models have to be
calibrated on experimental data to present correct behavioural features. This
calibration is essential to enhance the social integration of the robot into
the group. When calibrated, the behavioural model of fish behaviour is
implemented to drive a robot with closed-loop control of social interactions
into a group of zebrafish. This approach can be useful to form mixed-groups,
and study animal individual and collective behaviour by using biomimetic
autonomous robots capable of responding to the animals in long-standing
experiments. Here, we show a methodology for continuous real-time calibration
and refinement of multi-level behavioural model. The real-time calibration, by
an evolutionary algorithm, is based on simulation of the model to correspond to
the observed fish behaviour in real-time. The calibrated model is updated on
the robot and tested during the experiments. This method allows to cope with
changes of dynamics in fish behaviour. Moreover, each fish presents individual
behavioural differences. Thus, each trial is done with naive fish groups that
display behavioural variability. This real-time calibration methodology can
optimise the robot behaviours during the experiments. Our implementation of
this methodology runs on three different computers that perform individual
tracking, data-analysis, multi-objective evolutionary algorithms, simulation of
the fish robot and adaptation of the robot behavioural models, all in
real-time.Comment: 9 pages, 3 figure
- …