1,254 research outputs found

    Poincaré on the Foundation of Geometry in the Understanding

    Get PDF
    This paper is about Poincaré’s view of the foundations of geometry. According to the established view, which has been inherited from the logical positivists, Poincaré, like Hilbert, held that axioms in geometry are schemata that provide implicit definitions of geometric terms, a view he expresses by stating that the axioms of geometry are “definitions in disguise.” I argue that this view does not accord well with Poincaré’s core commitment in the philosophy of geometry: the view that geometry is the study of groups of operations. In place of the established view I offer a revised view, according to which Poincaré held that axioms in geometry are in fact assertions about invariants of groups. Groups, as forms of the understanding, are prior in conception to the objects of geometry and afford the proper definition of those objects, according to Poincaré. Poincaré’s view therefore contrasts sharply with Kant’s foundation of geometry in a unique form of sensibility. According to my interpretation, axioms are not definitions in disguise because they themselves implicitly define their terms, but rather because they disguise the definitions which imply them

    Restricted three-body problem in effective-field-theory models of gravity

    Full text link
    One of the outstanding problems of classical celestial mechanics was the restricted 3-body prob- lem, in which a planetoid of small mass is subject to the Newtonian attraction of two celestial bodies of large mass, as it occurs, for example, in the sun-earth-moon system. On the other hand, over the last decades, a systematic investigation of quantum corrections to the Newtonian potential has been carried out in the literature on quantum gravity. The present paper studies the effect of these tiny quantum corrections on the evaluation of equilibrium points. It is shown that, despite the extreme smallness of the corrections, there exists no choice of sign of these corrections for which all qualitative features of the restricted 3-body problem in Newtonian theory remain unaffected. Moreover, first-order stability of equilibrium points is characterized by solving a pair of algebraic equations of fifth degree, where some coefficients depend on the Planck length. The coordinates of stable equilibrium points are slightly changed with respect to Newtonian theory, because the planetoid is no longer at equal distance from the two bodies of large mass. The effect is conceptually interesting but too small to be observed, at least for the restricted 3-body problems available in the solar system.Comment: 20 pages, latex, 8 figure

    A Renormalization Proof of the KAM Theorem for Non-Analytic Perturbations

    Full text link
    We shall use a Renormalization Group (RG) scheme in order to prove the classical KAM result in the case of a non-analytic perturbation (the latter will be assumed to have continuous derivatives up to a sufficiently large order). We shall proceed by solving a sequence of problems in which the perturbations are analytic approximations of the original one. We shall finally show that the sequence of the approximate solutions will converge to a differentiable solution of the original problem.Comment: 33 pages, no figure

    Henri Poincaré: The Status of Mechanical Explanations and the Foundations of Statistical Mechanics

    Get PDF
    The first goal of this paper is to show the evolution of Poincaré’s opinion on the mechanistic reduction of the principles of thermodynamics, placing it in the context of the science of his time. The second is to present some of his work in 1890 on the foundations of statistical mechanics. He became interested first in thermodynamics and its relation with mechanics, drawing on the work of Helm-holtz on monocyclic systems. After a period of skepticism concerning the kinetic theory, he read some of Maxwell’s memories and contributed to the foundations of statistical mechanics. I also show that Poincaré's contributions to the founda-tions of statistical mechanics are closely linked to his work in celestial mechanics and its interest in probability theory and its role in physics

    Virial theorem for rotating self-gravitating Brownian particles and two-dimensional point vortices

    Full text link
    We derive the proper form of Virial theorem for a system of rotating self-gravitating Brownian particles. We show that, in the two-dimensional case, it takes a very simple form that can be used to obtain general results about the dynamics of the system without being required to solve the Smoluchowski-Poisson system explicitly. We also develop the analogy between self-gravitating systems and two-dimensional point vortices and derive a Virial-like relation for the vortex system

    Persistent Chaos in High Dimensions

    Full text link
    An extensive statistical survey of universal approximators shows that as the dimension of a typical dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically and the number of parameter windows with periodic behavior decreases. A subset of parameter space remains in which topological change induced by small parameter variation is very common. It turns out, however, that if the system's dimension is sufficiently high, this inevitable, and expected, topological change is never catastrophic, in the sense chaotic behavior is preserved. One concludes that deterministic chaos is persistent in high dimensions.Comment: 4 pages, 3 figures; Changes in response to referee comment

    Earth-Moon Lagrangian points as a testbed for general relativity and effective field theories of gravity

    Get PDF
    We first analyse the restricted four-body problem consisting of the Earth, the Moon and the Sun as the primaries and a spacecraft as the planetoid. This scheme allows us to take into account the solar perturbation in the description of the motion of a spacecraft in the vicinity of the stable Earth-Moon libration points L4 and L5 both in the classical regime and in the context of effective field theories of gravity. A vehicle initially placed at L4 or L5 will not remain near the respective points. In particular, in the classical case the vehicle moves on a trajectory about the libration points for at least 700 days before escaping away. We show that this is true also if the modified long-distance Newtonian potential of effective gravity is employed. We also evaluate the impulse required to cancel out the perturbing force due to the Sun in order to force the spacecraft to stay precisely at L4 or L5. It turns out that this value is slightly modified with respect to the corresponding Newtonian one. In the second part of the paper, we first evaluate the location of all Lagrangian points in the Earth-Moon system within the framework of general relativity. For the points L4 and L5, the corrections of coordinates are of order a few millimeters and describe a tiny departure from the equilateral triangle. After that, we set up a scheme where the theory which is quantum corrected has as its classical counterpart the Einstein theory, instead of the Newtonian one. In other words, we deal with a theory involving quantum corrections to Einstein gravity, rather than to Newtonian gravity. By virtue of the effective-gravity correction to the long-distance form of the potential among two point masses, all terms involving the ratio between the gravitational radius of the primary and its separation from the planetoid get modified. Within this framework, for the Lagrangian points of stable equilibrium, we find quantum corrections of order two millimeters, whereas for Lagrangian points of unstable equilibrium we find quantum corrections below a millimeter. In the latter case, for the point L1, general relativity corrects Newtonian theory by 7.61 meters, comparable, as an order of magnitude, with the lunar geodesic precession of about 3 meters per orbit. The latter is a cumulative effect accurately measured at the centimeter level through the lunar laser ranging positioning technique. Thus, it is possible to study a new laser ranging test of general relativity to measure the 7.61-meter correction to the L1 Lagrangian point, an observable never used before in the Sun-Earth-Moon system. Performing such an experiment requires controlling the propulsion to precisely reach L1, an instrumental accuracy comparable to the measurement of the lunar geodesic precession, understanding systematic effects resulting from thermal radiation and multi-body gravitational perturbations. This will then be the basis to consider a second-generation experiment to study deviations of effective field theories of gravity from general relativity in the Sun-Earth-Moon system

    On Hausdorff dimension of the set of closed orbits for a cylindrical transformation

    Full text link
    We deal with Besicovitch's problem of existence of discrete orbits for transitive cylindrical transformations Tφ:(x,t)↦(x+α,t+φ(x))T_\varphi:(x,t)\mapsto(x+\alpha,t+\varphi(x)) where Tx=x+αTx=x+\alpha is an irrational rotation on the circle \T and \varphi:\T\to\R is continuous, i.e.\ we try to estimate how big can be the set D(\alpha,\varphi):=\{x\in\T:|\varphi^{(n)}(x)|\to+\infty\text{as}|n|\to+\infty\}. We show that for almost every α\alpha there exists φ\varphi such that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is at least 1/21/2. We also provide a Diophantine condition on α\alpha that guarantees the existence of φ\varphi such that the dimension of D(α,φ)D(\alpha,\varphi) is positive. Finally, for some multidimensional rotations TT on \T^d, d≥3d\geq3, we construct smooth φ\varphi so that the Hausdorff dimension of D(α,φ)D(\alpha,\varphi) is positive.Comment: 32 pages, 1 figur

    Quantum effects on Lagrangian points and displaced periodic orbits in the Earth-Moon system

    Get PDF
    Recent work in the literature has shown that the one-loop long distance quantum corrections to the Newtonian potential imply tiny but observable effects in the restricted three-body problem of celestial mechanics, i.e., at the Lagrangian libration points of stable equilibrium the planetoid is not exactly at equal distance from the two bodies of large mass, but the Newtonian values of its coordinates are changed by a few millimeters in the Earth-Moon system. First, we assess such a theoretical calculation by exploiting the full theory of the quintic equation, i.e., its reduction to Bring-Jerrard form and the resulting expression of roots in terms of generalized hypergeometric functions. By performing the numerical analysis of the exact formulas for the roots, we confirm and slightly improve the theoretical evaluation of quantum corrected coordinates of Lagrangian libration points of stable equilibrium. Second, we prove in detail that also for collinear Lagrangian points the quantum corrections are of the same order of magnitude in the Earth-Moon system. Third, we discuss the prospects to measure, with the help of laser ranging, the above departure from the equilateral triangle picture, which is a challenging task. On the other hand, a modern version of the planetoid is the solar sail, and much progress has been made, in recent years, on the displaced periodic orbits of solar sails at all libration points, both stable and unstable. The present paper investigates therefore, eventually, a restricted three-body problem involving Earth, Moon and a solar sail. By taking into account the one-loop quantum corrections to the Newtonian potential, displaced periodic orbits of the solar sail at libration points are again found to exist

    Gravitational Energy Loss and Binary Pulsars in the Scalar Ether-Theory of Gravitation

    Full text link
    Motivation is given for trying a theory of gravity with a preferred reference frame (``ether'' for short). One such theory is summarized, that is a scalar bimetric theory. Dynamics is governed by an extension of Newton's second law. In the static case, geodesic motion is recovered together with Newton's attraction field. In the static spherical case, Schwarzschild's metric is got. An asymptotic scheme of post-Minkowskian (PM) approximation is built by associating a conceptual family of systems with the given weakly-gravitating system. It is more general than the post-Newtonian scheme in that the velocity may be comparable with cc. This allows to justify why the 0PM approximation of the energy rate may be equated to the rate of the Newtonian energy, as is usually done. At the 0PM approximation of this theory, an isolated system loses energy by quadrupole radiation, without any monopole or dipole term. It seems plausible that the observations on binary pulsars (the pulse data) could be nicely fitted with a timing model based on this theory.Comment: Text of a talk given at the 4th Conf. on Physics Beyond the Standard Model, Tegernsee, June 2003, submitted to the Proceedings (H. V. Klapdor-Kleingrothaus, ed.
    • …
    corecore