471 research outputs found

    Процес «Спілки Визволення України» та зростання селянського опору в умовах суцільної колективізації

    Get PDF
    Мета даної роботи полягає у з’ясуванні механізму використання матеріалів процесу «СВУ» на території сучасної Чернігівщини, пропагандистських цілях та реакції на нього з боку як населення, лояльного до влади, так і селян, які вперто чинили опір політиці колективізації

    Speckle correlation resolution enhancement of wide-field fluorescence imaging

    Get PDF
    High-resolution fluorescence imaging is essential in nanoscience and biological sciences. Due to the diffraction limit, conventional imaging systems can only resolve structures larger than 200 nm. Here, we introduce a new fluorescence imaging method that enhances the resolution by using a high-index scattering medium as an imaging lens. Simultaneously, we achieve a wide field of view. We develop a new image reconstruction algorithm that converges even for complex object structures. We collect two-dimensional fluorescence images of a collection of 100 nm diameter dye-doped nanospheres, and demonstrate a deconvolved Abbe resolution of 116 nm with a field of view of 10 μm×10  μm . Our method is robust against optical aberrations and stage drifts, and therefore is well suited to image nanostructures with high resolution under ambient conditions

    Diffusion and Localization of Cold Atoms in 3D Optical Speckle

    Full text link
    In this work we re-formulate and solve the self-consistent theory for localization to a Bose-Einstein condensate expanding in a 3D optical speckle. The long-range nature of the fluctuations in the potential energy, treated in the self-consistent Born approximation, make the scattering strongly velocity dependent, and its consequences for mobility edge and fraction of localized atoms have been investigated numerically.Comment: 8 pages, 11 figure

    A new numerical approach to Anderson (de)localization

    Full text link
    We develop a new approach for the Anderson localization problem. The implementation of this method yields strong numerical evidence leading to a (surprising to many) conjecture: The two dimensional discrete random Schroedinger operator with small disorder allows states that are dynamically delocalized with positive probability. This approach is based on a recent result by Abakumov-Liaw-Poltoratski which is rooted in the study of spectral behavior under rank-one perturbations, and states that every non-zero vector is almost surely cyclic for the singular part of the operator. The numerical work presented is rather simplistic compared to other numerical approaches in the field. Further, this method eliminates effects due to boundary conditions. While we carried out the numerical experiment almost exclusively in the case of the two dimensional discrete random Schroedinger operator, we include the setup for the general class of Anderson models called Anderson-type Hamiltonians. We track the location of the energy when a wave packet initially located at the origin is evolved according to the discrete random Schroedinger operator. This method does not provide new insight on the energy regimes for which diffusion occurs.Comment: 15 pages, 8 figure

    Determination of the diffusion constant using phase-sensitive measurements

    Get PDF
    We apply a pulsed-light interferometer to measure both the intensity and the phase of light that is transmitted through a strongly scattering disordered material. From a single set of measurements we obtain the time-resolved intensity, frequency correlations and statistical phase information simultaneously. We compare several independent techniques of measuring the diffusion constant for diffuse propagation of light. By comparing these independent measurements, we obtain experimental proof of the consistency of the diffusion model and corroborate phase statistics theory.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Optical extinction due to intrinsic structural variations of photonic crystals

    Full text link
    Unavoidable variations in size and position of the building blocks of photonic crystals cause light scattering and extinction of coherent beams. We present a new model for both 2 and 3-dimensional photonic crystals that relates the extinction length to the magnitude of the variations. The predicted lengths agree well with our new experiments on high-quality opals and inverse opals, and with literature data analyzed by us. As a result, control over photons is limited to distances up to 50 lattice parameters (15μ\sim 15 \mum) in state-of-the-art structures, thereby impeding large-scale applications such as integrated circuits. Conversely, scattering in photonic crystals may lead to novel physics such as Anderson localization and non-classical diffusion.Comment: 10 pages, 3 figures. Changes include: added Lagendijk as author; simplified and generalized the tex

    Probing the eigenfunction fractality with a stop watch

    Full text link
    We study numerically the distribution of scattering phases P(Φ){\cal P}(\Phi) and of Wigner delay times P(τW){\cal P}(\tau_W) for the power-law banded random matrix (PBRM) model at criticality with one channel attached to it. We find that P(Φ){\cal P}(\Phi) is insensitive to the position of the channel and undergoes a transition towards uniformity as the bandwidth bb of the PBRM model increases. The inverse moments of Wigner delay times scale as LqDq+1\sim L^{- q D_{q+1}}, where DqD_q are the multifractal dimensions of the eigenfunctions of the corresponding closed system and LL is the system size. The latter scaling law is sensitive to the position of the channel.Comment: 5 pages, 4 figure

    A multiple-scattering approach to interatomic interactions and superradiance in inhomogeneous dielectrics

    Get PDF
    The dynamics of a collection of resonant atoms embedded inside an inhomogeneous nondispersive and lossless dielectric is described with a dipole Hamiltonian that is based on a canonical quantization theory. The dielectric is described macroscopically by a position-dependent dielectric function and the atoms as microscopic harmonic oscillators. We identify and discuss the role of several types of Green tensors that describe the spatio-temporal propagation of field operators. After integrating out the atomic degrees of freedom, a multiple-scattering formalism emerges in which an exact Lippmann-Schwinger equation for the electric field operator plays a central role. The equation describes atoms as point sources and point scatterers for light. First, single-atom properties are calculated such as position-dependent spontaneous-emission rates as well as differential cross sections for elastic scattering and for resonance fluorescence. Secondly, multi-atom processes are studied. It is shown that the medium modifies both the resonant and the static parts of the dipole-dipole interactions. These interatomic interactions may cause the atoms to scatter and emit light cooperatively. Unlike in free space, differences in position-dependent emission rates and radiative line shifts influence cooperative decay in the dielectric. As a generic example, it is shown that near a partially reflecting plane there is a sharp transition from two-atom superradiance to single-atom emission as the atomic positions are varied.Comment: 18 pages, 4 figures, to appear in Physical Review

    Light scattering from three-level systems: The T-matrix of a point-dipole with gain

    Get PDF
    We present an extension of the T-matrix approach to scattering of light by a three-level system, using a description based on a Master equation. More particularly, we apply our formalism to calculate the T-matrix of a pumped three-level atom, providing an exact and analytical expression describing the influence of a pump on the light scattering properties of an atomic three-level system

    Adiabatically changing the phase-space density of a trapped Bose gas

    Get PDF
    We show that the degeneracy parameter of a trapped Bose gas can be changed adiabatically in a reversible way, both in the Boltzmann regime and in the degenerate Bose regime. We have performed measurements on spin-polarized atomic hydrogen in the Boltzmann regime demonstrating reversible changes of the degeneracy parameter (phase-space density) by more than a factor of two. This result is in perfect agreement with theory. By extending our theoretical analysis to the quantum degenerate regime we predict that, starting close enough to the Bose-Einstein phase transition, one can cross the transition by an adiabatic change of the trap shape.Comment: 4 pages, 3 figures, Latex, submitted to PR
    corecore