1,719 research outputs found
How Can Active Region Plasma Escape into the Solar Wind from below a Closed Helmet Streamer?
Recent studies show that active-region (AR) upflowing plasma, observed by the
EUV-Imaging Spectrometer (EIS), onboard Hinode, can gain access to open
field-lines and be released into the solar wind (SW) via magnetic-interchange
reconnection at magnetic null-points in pseudo-streamer configurations. When
only one bipolar AR is present on the Sun and it is fully covered by the
separatrix of a streamer, such as AR 10978 in December 2007, it seems unlikely
that the upflowing AR plasma can find its way into the slow SW. However,
signatures of plasma with AR composition have been found at 1 AU by Culhane et
al. (2014) apparently originating from the West of AR 10978. We present a
detailed topology analysis of AR 10978 and the surrounding large-scale corona
based on a potential-field source-surface (PFSS) model. Our study shows that it
is possible for the AR plasma to get around the streamer separatrix and be
released into the SW via magnetic reconnection, occurring in at least two main
steps. We analyse data from the Nan\c{c}ay Radioheliograph (NRH) searching for
evidence of the chain of magnetic reconnections proposed. We find a noise storm
above the AR and several varying sources at 150.9 MHz. Their locations suggest
that they could be associated with particles accelerated during the first-step
reconnection process and at a null point well outside of the AR. However, we
find no evidence of the second-step reconnection in the radio data. Our results
demonstrate that even when it appears highly improbable for the AR plasma to
reach the SW, indirect channels involving a sequence of reconnections can make
it possible.Comment: 26 pages, 10 figures. appears in Solar Physics, 201
Neutralino Pair Production and 3-Body Decays at Linear Colliders as Probes of CP Violation in the Neutralino System
In the CP-invariant supersymmetric theories, the steep S-wave (slow P-wave)
rise of the cross section for any non-diagonal neutralino pair production in
annihilation, (), near threshold is accompanied by the slow P-wave (steep S-wave) decrease
of the fermion invariant mass distribution of the 3-body neutralino decay,
( or ), near the end
point. These selection rules, unique to the neutralino system due to its
Majorana nature, guarantee that the observation of simultaneous sharp S-wave
excitations of the production cross section near threshold and the lepton and
quark invariant mass distribution near the end point is a qualitative,
unambiguous evidence for CP violation in the neutralino system.Comment: 11 pages, 1 eps figure, a reference adde
One-loop corrections to the chargino and neutralino mass matrices in the on-shell scheme
We present a consistent procedure for the calculation of the one-loop
corrections to the charginos and neutralinos by using their on-shell mass
matrices. The on-shell gaugino mass parameters M and M', and the Higgsino mass
parameter \mu are defined by the elements of these on-shell mass matrices. The
on-shell mass matrices are different by finite one-loop corrections from the
tree-level ones given in terms of the on-shell parameters. When the on-shell M
and \mu are determined by the chargino sector, the neutralino masses receive
corrections up to 4%. This must be taken into account in precision measurements
at future e^+ e^- linear colliders.Comment: One reference added, typo in eq. (20) correcte
Width of Radio-Loud and Radio-Quiet CMEs
In the present paper we report on the difference in angular sizes between
radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples
of events using Wind/WAVES and SOHO/LASCO observations obtained during
1996-2005. It is shown that the radio-loud CMEs are almost two times wider than
the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore we show
that the radio-quiet CMEs have a narrow expanding bright part with a large
extended diffusive structure. These results were obtained by measuring the CME
widths in three different ways.Comment: Solar Physic, in pres
Proteasome Lid Bridges Mitochondrial Stress with Cdc53/Cullin1 NEDDylation Status
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26 S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis
Ice: a strongly correlated proton system
We discuss the problem of proton motion in Hydrogen bond materials with
special focus on ice. We show that phenomenological models proposed in the past
for the study of ice can be recast in terms of microscopic models in close
relationship to the ones used to study the physics of Mott-Hubbard insulators.
We discuss the physics of the paramagnetic phase of ice at 1/4 filling (neutral
ice) and its mapping to a transverse field Ising model and also to a gauge
theory in two and three dimensions. We show that H3O+ and HO- ions can be
either in a confined or deconfined phase. We obtain the phase diagram of the
problem as a function of temperature T and proton hopping energy t and find
that there are two phases: an ordered insulating phase which results from an
order-by-disorder mechanism induced by quantum fluctuations, and a disordered
incoherent metallic phase (or plasma). We also discuss the problem of
decoherence in the proton motion introduced by the lattice vibrations (phonons)
and its effect on the phase diagram. Finally, we suggest that the transition
from ice-Ih to ice-XI observed experimentally in doped ice is the
confining-deconfining transition of our phase diagram.Comment: 12 pages, 9 figure
Momentum asymmetries as CP violating observables
Three body decays can exhibit CP violation that arises from interfering
diagrams with different orderings of the final state particles. We construct
several momentum asymmetry observables that are accessible in a hadron collider
environment where some of the final state particles are not reconstructed and
not all the kinematic information can be extracted. We discuss the
complications that arise from the different possible production mechanisms of
the decaying particle. Examples involving heavy neutralino decays in
supersymmetric theories and heavy Majorana neutrino decays in Type-I seesaw
models are examined.Comment: 20 pages, 9 figures. Clarifying comments and one reference added,
matches published versio
CP Phases in Correlated Production and Decay of Neutralinos in the Minimal Supersymmetric Standard Model
We investigate the associated production of neutralinos
accompanied by the neutralino
leptonic decay , taking into
account initial beam polarization and production-decay spin correlations in the
minimal supersymmetric standard model with general CP phases but without
generational mixing in the slepton sector. The stringent constraints from the
electron EDM on the CP phases are also included in the discussion. Initial beam
polarizations lead to three CP--even distributions and one CP--odd
distribution, which can be studied independently of the details of the
neutralino decays. We find that the production cross section and the branching
fractions of the leptonic neutralino decays are very sensitive to the CP
phases. In addition, the production--decay spin correlations lead to several
CP--even observables such as lepton invariant mass distribution, and lepton
angular distribution, and one interesting T--odd (CP--odd) triple product of
the initial electron momentum and two final lepton momenta, the size of which
might be large enough to be measured at the high--luminosity future
electron--positron collider or can play a complementary role in constraining
the CP phases with the EDM constraints.Comment: Revtex, 37 pages, 12 eps figure
Boundedness of Pseudodifferential Operators on Banach Function Spaces
We show that if the Hardy-Littlewood maximal operator is bounded on a
separable Banach function space and on its associate space
, then a pseudodifferential operator
is bounded on whenever the symbol belongs to the
H\"ormander class with ,
or to the the Miyachi class
with ,
. This result is applied to the case of
variable Lebesgue spaces .Comment: To appear in a special volume of Operator Theory: Advances and
Applications dedicated to Ant\'onio Ferreira dos Santo
The neutralino projector formalism for complex SUSY parameters
We present a new formalism describing the neutralino physics in the context
of the minimal supersymmetric model (MSSM), where CP violation induced by
complex and parameters is allowed. The formalism is based on the
construction of neutralino projectors, and can be directly generalized to
non-minimal SUSY models involving any number of neutralinos. It extends a
previous work applied to the real SUSY parameter case. In MSSM, the method
allows to describe all physical observables related to a specific neutralino,
in terms of its
CP eigenphase and three complex numbers called its "reduced projector
elements".
As the experimental knowledge on the neutralino-chargino sectors will be
being accumulated, the problem of extracting the various SUSY parameters will
arise. Motivated by this, we consider various scenarios concerning the
quantities that could be first measured. Analytical disentangled expressions
determining the related SUSY parameters from them, are then derived, which also
emphasize the efficiency of the formalism.Comment: Version accepted in Phys. Rev. D. e-mail: [email protected]
- âŠ