10,626 research outputs found

    Nanophotonic hybridization of narrow atomic cesium resonances and photonic stop gaps of opaline nanostructures

    Get PDF
    We study a hybrid system consisting of a narrowband atomic optical resonance and the long-range periodic order of an opaline photonic nanostructure. To this end, we have infiltrated atomic cesium vapor in a thin silica opal photonic crystal. With increasing temperature, the frequencies of the opal's reflectivity peaks shift down by >20% due to chemical reduction of the silica. Simultaneously, the photonic bands and gaps shift relative to the fixed near-infrared cesium D1 transitions. As a result the narrow atomic resonances with high finesse (f/df=8E5) dramatically change shape from a usual dispersive shape at the blue edge of a stop gap, to an inverted dispersion lineshape at the red edge of a stop gap. The lineshape, amplitude, and off-resonance reflectivity are well modeled with a transfer-matrix model that includes the dispersion and absorption of Cs hyperfine transitions and the chemically-reduced opal. An ensemble of atoms in a photonic crystal is an intriguing hybrid system that features narrow defect-like resonances with a strong dispersion, with potential applications in slow light, sensing and optical memory.Comment: 8 pages, 6 figure

    First principles study of intrinsic point defects in hexagonal barium titanate

    Get PDF
    Density functional theory (DFT) calculations have been used to study the nature of intrinsic defects in the hexagonal polymorph of barium titanate. Defect formation energies are derived for multiple charge states and due consideration is given to finite-size effects (elastic and electrostatic) and the band gap error in defective cells. Correct treatment of the chemical potential of atomic oxygen means that it is possible to circumvent the usual errors associated with the inaccuracy of DFT calculations on the oxygen dimer. Results confirm that both mono- and di-vacancies exist in their nominal charge states over the majority of the band gap. Oxygen vacancies are found to dominate the system in metal-rich conditions with face sharing oxygen vacancies being preferred over corner sharing oxygen vacancies. In oxygen-rich conditions, the dominant vacancy found depends on the Fermi level. Binding energies also show the preference for metal-oxygen di-vacancy formation. Calculated equilibrium concentrations of vacancies in the system are presented for numerous temperatures. Comparisons are drawn with the cubic polymorph as well as with previous potential-based simulations and experimental results

    Towards a performative theory of resistance: Senior managers and revolting subject(ivitie)s

    Get PDF
    This article develops a performative theory of resistance. It uses Judith Butler’s and Karen Barad’s theories of performativity to explore how resistance (to organizational strategies and policies) and resistants (those who resist such strategies and policies) co-emerge, within and through complex intra-actions of entangled discourses, materialities, affect and space/time. The article uses empirical materials from a case study of the implementation of a talent management strategy. We analyse interviews with the senior managers charged with implementing the strategy, the influence of material, non-sentient actors, and the experiences of the researchers when carrying out the interviews. This leads to a theory that resistance and resistants emerge in moment-to-moment co-constitutive moves that may be invoked when identity or self is put in jeopardy. Resistance, we suggest, is the power (residing with resistants) to say ‘no’ to organizational requirements that would otherwise threaten to render the self abject

    The Contribution of Blazars to the Extragalactic Diffuse Gamma-ray Background and Their Future Spatial Resolution

    Full text link
    We examine the constraints on the luminosity-dependent density evolution model for the evolution of blazars given the observed spectrum of the diffuse gamma-ray background (DGRB), blazar source-count distribution, and the blazar spectral energy distribution sequence model, which relates the observed the blazar spectrum to its luminosity. We show that the DGRB observed by the Large Area Telescope (LAT) aboard the Fermi Gamma Ray Space Telescope can be produced entirely by gamma-ray emission from blazars and nonblazar active galactic nuclei, and that our blazar evolution model is consistent with and constrained by the spectrum of the DGRB and flux source-count distribution function of blazars observed by Fermi-LAT. Our results are consistent with previous work that used EGRET spectral data to forecast the Fermi-LAT DGRB. The model includes only three free parameters, and forecasts that >~ 95% of the flux from blazars will be resolved into point sources by Fermi-LAT with 5 years of observation, with a corresponding reduction of the flux in the DGRB by a factor of ~2 to 3 (95% confidence level), which has implications for the Fermi-LAT's sensitivity to dark matter annihilation photons.Comment: 13 pages, 7 figures; v3: minor changes, matches version to appear in Phys. Rev.

    IMPLEMENTING CONDITION-BASED MAINTENANCE PLUS AS A GROUND MAINTENANCE STRATEGY IN THE MARINE CORPS

    Get PDF
    In 2020, Marine Corps Order 4151.22 and Commandant White Letter 2–20 was published to implement Condition-Based Maintenance Plus (CBM+) as a ground maintenance strategy to improve operational availability and reduce life-cycle costs. The Fleet Marine Force is still operating under preventative and corrective maintenance strategies instead of CBM+ strategies. Organizational inertia, such as competing priorities, legacy processes, and inspections, has slowed the integration of CBM+ strategies. We reviewed key policy documents and interviewed fifteen subject-matter experts relevant to Marine Corps ground transport maintenance policies and practices. Based on this information, we conducted a thematic analysis using an organizational change approach to identify barriers and opportunities that impact CBM+ implementation. We found that immediate gains from CBM+ implementation in the Marine Corps can be achieved through a focus on people and process improvements while technology integration continues. The CBM+ strategy supports Force Design 2030 and Talent Management 2030 objectives and emphasizing this alignment can build momentum for CBM+. In this paper, we make six specific recommendations that apply organizational change concepts to enable effective CBM+ implementation as a ground maintenance strategy in the Marine Corps.NPS Naval Research ProgramThis project was funded in part by the NPS Naval Research Program.Major, United States Marine CorpsMajor, United States Marine CorpsApproved for public release. Distribution is unlimited

    Modeling the non-recycled Fermi gamma-ray pulsar population

    Get PDF
    We use Fermi Gamma-ray Space Telescope detections and upper limits on non-recycled pulsars obtained from the Large Area Telescope (LAT) to constrain how the gamma-ray luminosity L depends on the period P and the period derivative \dot{P}. We use a Bayesian analysis to calculate a best-fit luminosity law, or dependence of L on P and \dot{P}, including different methods for modeling the beaming factor. An outer gap (OG) magnetosphere geometry provides the best-fit model, which is L \propto P^{-a} \dot{P}^{b} where a=1.36\pm0.03 and b=0.44\pm0.02, similar to but not identical to the commonly assumed L \propto \sqrt{\dot{E}} \propto P^{-1.5} \dot{P}^{0.5}. Given upper limits on gamma-ray fluxes of currently known radio pulsars and using the OG model, we find that about 92% of the radio-detected pulsars have gamma-ray beams that intersect our line of sight. By modeling the misalignment of radio and gamma-ray beams of these pulsars, we find an average gamma-ray beaming solid angle of about 3.7{\pi} for the OG model, assuming a uniform beam. Using LAT-measured diffuse fluxes, we place a 2{\sigma} upper limit on the average braking index and a 2{\sigma} lower limit on the average surface magnetic field strength of the pulsar population of 3.8 and 3.2 X 10^{10} G, respectively. We then predict the number of non-recycled pulsars detectable by the LAT based on our population model. Using the two-year sensitivity, we find that the LAT is capable of detecting emission from about 380 non-recycled pulsars, including 150 currently identified radio pulsars. Using the expected five-year sensitivity, about 620 non-recycled pulsars are detectable, including about 220 currently identified radio pulsars. We note that these predictions significantly depend on our model assumptions.Comment: 26 pages, 10 figures, Accepted by ApJ on 8 September 201

    Colloidal brazil nut effect in sediments of binary charged suspensions

    Full text link
    Equilibrium sedimentation density profiles of charged binary colloidal suspensions are calculated by computer simulations and density functional theory. For deionized samples, we predict a colloidal ``brazil nut'' effect: heavy colloidal particles sediment on top of the lighter ones provided that their mass per charge is smaller than that of the lighter ones. This effect is verifiable in settling experiments.Comment: 4 pages, 4 figure
    • …
    corecore