45,561 research outputs found

    Hydrogen environment embrittlement of astroloy and Udimet 700 (nickel-base) and V-57 (iron-base) superalloys

    Get PDF
    The sensitivity to hydrogen environment embrittlement of three superalloys was determined. Astroloy forgings were resistant to embrittlement during smooth tensile, notched tensile, and creep testing in 3.5-MN/sq m hydrogen over the range 23 to 760 C. The notched tensile strength of Udimet 700 bar stock in hydrogen at 23 C was only 50 percent of the baseline value in helium. Forgings of V-57 were not significantly embrittled by hydrogen during smooth tensile testing over the range 23 to 675 C; creep and rupture lives of V-57 were degraded by hydrogen. Postcreep tensile ductility of V-57 was reduced by 40 percent after creep exposure in hydrogen

    Effect of exposure cycle on hot salt stress corrosion of a titanium alloy

    Get PDF
    The influence of exposure cycle on the hot-salt stress-corrosion cracking resistance of the Ti-8Al-1Mo-1V alloy was determined. Both temperature and stress were cycled simultaneously to simulate turbine-powered aircraft service cycles. Temperature and stress were also cycled independently to determine their individual effects. Substantial increases in crack threshold stresses were observed for cycles in which both temperature and stress or temperature alone were applied for 1 hour and removed for 3 hours. The crack threshold stresses for these cyclic exposures were twice those determined for continuous exposure for the same total time of 96 hours

    Subroutines GEORGE and DRASTC simplify operation of automatic digital plotter

    Get PDF
    FORTRAN language subroutines enable the production of a tape for a 360-30 tape unit that controls the CALCOMP 566 Digital Incremental Plotter. This provides the plotter with instructions for graphically displaying data points with the proper scaling of axes, numbering, lettering, and tic marking

    Boiler for generating high quality vapor

    Get PDF
    Boiler supplies vapor for use in turbines by imparting a high angular velocity to the liquid annulus in heated rotating drum. Drum boiler provides a sharp interface between boiling liquid and vapor, thereby, inhibiting the formation of unwanted liquid droplets

    Distributed microprocessors in a tactical universal modem

    Get PDF
    The distributed microprocessor system associated with a wideband signal conversion unit (WBSCU) is described. Multiple embedded 8086 and 2901 microprocessors, supported by dedicated hardware modules, perform the required real time operations for both transmit and receive functions. Commands from a host computer determine the configuration of the WBSCU via the IEEE 488 bus. Each of the four WBSCU channels is assigned to process a specified IF waveform; each channel configures its own resources and, in some cases, borrows resources from other channels. The processed waveform data is communicated from individual channels to redundant global memories. Data flow between the user community and global memories occurs via redundant 1553 buses through intelligent Bus Interface Units. Each WBSCU channel contains one 2901 bit slice machine and one 8086 microprocessor. The 2901 provides high speed processing capability for the most time critical operations. The 8086 is used for lower speed processing tasks where its high level language capability can be better exploited. Each 8086 has a global bus for wideband interprocessor communication, and a local bus for 8086/2901, master/slave communication. Software architecture consists of a control and communications structure governing mode dependent signal processing tasks

    Forced-flow once-through boilers

    Get PDF
    A compilation and review of NASA-sponsored research on boilers for use in spacecraft electrical power generation systems is presented. Emphasis is on the heat-transfer and fluid-flow problems. In addition to space applications, much of the boiler technology is applicable to terrestrial and marine uses such as vehicular power, electrical power generation, vapor generation, and heating and cooling. Related research areas are discussed such as condensation, cavitation, line and boiler dynamics, the SNAP-8 project (Mercury-Rankine cycle), and conventional terrestrial boilers (either supercritical or gravity-assisted liquid-vapor separation types). The research effort was directed at developing the technology for once-through compact boilers with high heat fluxes to generate dry vapor stably, without utilizing gravity for phase separations. A background section that discusses, tutorially, the complex aspects of the boiling process is presented. Discussions of tests on alkali metals are interspersed with those on water and other fluids on a phenomenological basis

    Data-driven PDE discovery with evolutionary approach

    Full text link
    The data-driven models allow one to define the model structure in cases when a priori information is not sufficient to build other types of models. The possible way to obtain physical interpretation is the data-driven differential equation discovery techniques. The existing methods of PDE (partial derivative equations) discovery are bound with the sparse regression. However, sparse regression is restricting the resulting model form, since the terms for PDE are defined before regression. The evolutionary approach described in the article has a symbolic regression as the background instead and thus has fewer restrictions on the PDE form. The evolutionary method of PDE discovery (EPDE) is described and tested on several canonical PDEs. The question of robustness is examined on a noised data example

    Anisotropic valence-->core x-ray fluorescence from a [Rh(en)3][Mn(N)(CN)5]·H2O single crystal: Experimental results and density functional calculations

    Get PDF
    High resolution x-ray fluorescence spectra have been recorded for emission in different directions from a single crystal of the compound [Rh(en)3][Mn(N)(CN)5]·H2O. The spectra are interpreted by comparison with density functional theory (DFT) electronic structure calculations. The Kbeta[double-prime] line, which is strongly polarized along the Mn–N axis, can be viewed as an N(2s)-->Mn(1s) transition, and the angular dependence is understood within the dipole approximation. The so-called Kbeta2,5 region has numerous contributions but is dominated by Mn(4p) and C(2s)-->Mn(1s) transitions. Transition energy splittings are found in agreement with those of calculated occupied molecular orbitals to within 1 eV. Computed relative transition probabilities reproduce experimentally observed trends

    Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry

    Get PDF
    We describe a boundary-element method used to model the hydrodynamics of a bacterium propelled by a single helical flagellum. Using this model, we optimize the power efficiency of swimming with respect to cell body and flagellum geometrical parameters, and find that optima for swimming in unbounded fluid and near a no-slip plane boundary are nearly indistinguishable. We also consider the novel optimization objective of torque efficiency and find a very different optimal shape. Excluding effects such as Brownian motion and electrostatic interactions, it is demonstrated that hydrodynamic forces may trap the bacterium in a stable, circular orbit near the boundary, leading to the empirically observable surface accumulation of bacteria. Furthermore, the details and even the existence of this stable orbit depend on geometrical parameters of the bacterium, as described in this article. These results shed some light on the phenomenon of surface accumulation of micro-organisms and offer hydrodynamic explanations as to why some bacteria may accumulate more readily than others based on morphology
    • …
    corecore