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EFFECT OF EXPOSURE CYCLE ON HOT-SALT STRESS -CORROSION

OF A TITANIUM ALLOY

by Hugh R. Gray and James R. Johnston

Lewis Research Center

SUMMARY

An investigation was conducted to determine the influence of exposure cycle on the

hot-salt stress-corrosion cracking resistance of a titanium alloy. Salt-coated speci-

mens of the Ti-8A-1Mo-IV alloy were creep exposed at temperatures of 3200 and

4300 C (600 ° and 8000 F). Both temperature and stress were cycled simultaneously to

simulate a service cycle of compressor components of current turbine-powered aircraft.

Temperature and stress were also cycled independently to determine their individual ef-

fects. These results were then compared with a baseline 96-hour-continuous-exposure

crack threshold curve.

For 96 hours total time at temperature with a cycle in which both temperature and

stress were applied for 1 hour and removed for 3 hours, crack threshold stresses were

about 100 percent greater than those determined for the continuous-exposure baseline.

Likewise, 96 hours exposure with a temperature cycle consisting of 1 hour on and 3 hours

off at a constant stress resulted in crack threshold stresses 100 percent greater than the

baseline at both the 3200 C (6000 F) and 4300 C (8000 F) exposure temperatures. Other

temperature cycles (3 hr on/3 hr off, 1 hr on/1 hr off, and 3 hr on/1 hr off) and a stress

cycle of 1 hour on and 3 hours off resulted in crack threshold stresses 60 to 90 percent

greater than the continuous-exposure baseline at 3200 C (6000 F). None of these temp-

erature cycles or the stress cycle resulted in any increase in threshold stress as com-

pared with the baseline at 4300 C (8000 F).

Exposure cycle and an alloy's composition, processing conditions, and surface con-

dition are the major variables which influence a titanium alloy's sensitivity to hot-salt

stress-corrosion. Exposure cycle, surface condition, and the extensive use of the rela-

tively immune Ti-6A1-4V alloy explain the reliable service of titanium alloys with re-

spect to hot-salt stress-corrosion in current turbine engines.



INTRODUCTION

Numerous laboratory investigations, described in references 1 and 2, have demon-

strated that titanium alloys are susceptible to embrittlement and cracking while being

stressed in the presence of halides at elevated temperatures. This phenomenon has

been termed hot-salt stress-corrosion and is of interest because of the extensive use

of titanium alloys in gas-turbine engines. Conditions of stress, temperature, and salt-

air environment which result in stress-corrosion in the laboratory can be experienced

in flight by compressor components of current engines (ref. 3). Since advanced engine

designs propose that titanium alloys operate at even higher stresses and temperatures

than in current engines, there is concern that hot-salt stress-corrosion might become

a limiting factor in the use of titanium alloys.

Although there have been cases of hot-salt stress-corrosion cracking during titan-

ium alloy processing (ref. 4) and during engine test-stand operation (ref. 1), there

have not yet been any documented in-flight service failures that could conclusively be

attributed to hot-salt stress-corrosion. A research program has been conducted at

the NASA Lewis Research Center to rationalize this lack of service failures and to de-

termine whether hot-salt stress-corrosion of titanium alloys might be expected to be-

come a problem in advanced engines.

One of the preferred laboratory test techniques for determining susceptibility to

hot-salt stress-corrosion involves subjecting salt-coated titanium alloy specimens to

static loads. The test temperatures range from 2600 to 4800 C (5000 to 9000 F) and the

test duration is generally 100 hours. The specimens are then examined for evidence of

corrosion or cracking and may be subjected to mechanical testing at room temperature,

such as bend or tensile testing, to determine residual ductility. The results are then

interpreted on a stress-corrosion or no-stress-corrosion basis. Thus, the boundary

line separating regions of cracking from no cracking or embrittlement from nonembrit-

tlement on a plot of exposure stress against exposure temperature has been termed the

threshold curve for hot-salt stress-corrosion.

A previous investigation by the authors (ref. 5) has demonstrated that .variables

associated with the dynamic air environment typical of the compressor of current gas-

turbine engines do not have a major effect on the hot-salt stress-corrosion cracking of

titanium alloys. Specifically, decreasing air dewpoint (40 to -840 C) and salt concen-

tration (0.3 to 0.03 mg/cm 2) or increasing salt deposition temperature (2000 to 4300 C),

air pressure (0.1 to 0.4 MN/m 2 ), and air velocity (static to Mach 0.7) had only minor

beneficial effects on the hot-salt stress-corrosion of the Ti-8Al-lMo-lV alloy.

The variables that have been shown to have major effects are specimen surface

condition (refs. 5 and 6), processing conditions, heat-to-heat variations, and the com-

position of the titanium alloys (ref. 6). Two of these variables, composition and sur-

face condition, help to rationalize the lack of service failures. Most titanium alloy
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compressor components currently in service are made from the Ti-6A1-4V alloy. This

alloy is used at design creep stress levels which appear to be less than its hot-salt

stress-corrosion crack threshold stress (ref. 6). In addition, most compressor com-

ponents are shot peened or glass bead peened to produce residual compressive stresses

to achieve increased resistance to fatigue. Specimen surfaces with residual compres-

sive stresses have been shown to be more resistant to stress-corrosion than specimen

surfaces that are stress free (refs. 5 and 6) or surfaces that are residually stressed
in tension as a result of certain machining techniques. However, it must be empha-

sized that the protective influence of residual compressive stresses can anneal out dur-

ing long-time, elevated-temperature exposures.

The effect of exposure cycle on an alloy's susceptibility to hot-salt stress-corrosion

is certainly an important consideration. Several investigations (refs. 7 to 10) have

indicated that hot-salt stress-corrosion damage is not as severe during cyclic thermal

exposures as during continuous exposures for the same total times. These previous

investigations have determined only the influence of thermal cycling and have not at-
tempted to determine the role of stress cycling or the role of combined temperature-
stress cycling. Since the normal mode of turbine engine operation is cyclic, the

100-hour-continuous-exposure isothermal threshold curves commonly generated in
laboratory investigations represent conditions which are more severe than engine op-

erating conditions of current and even advanced titanium alloy compressor components.
The purpose of this present investigation was to study the effects of both thermal

and stress cycling on the hot-salt stress-corrosion resistance of a titanium alloy.

Temperature and stress were cycled simultaneously to determine their combined effects.
Temperature and stress were also cycled independently to determine their individual

effects. Exposure temperatures of 3200 and 4300 C (6000 and 8000 F) and cyclic times
of 1 and 3 hours were studied in detail. The alloy used was the familiar Ti-8AI-1Mo-1V

alloy which is very susceptible to hot-salt stress-corrosion. This alloy has been stud-
ied quite extensively by previous investigators and by the authors. As a consequence,
meaningful baseline data are available for comparison with the cyclic exposure data
determined in this study.

The U.S. customary system of units was used in this investigation. Conversion to
SI units was done for reporting purposes only.

MATERIAL, SPECIMENS, AND PROCEDURE

Material

A titanium - 8-wt%-aluminum - 1-wt %-molybdenum - 1-wt%-vanadium (Ti-8A1-
1Mo-1V) alloy in the mill-annealed condition (7900 C (14500 F) for 1 hr, air cooled)
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was used in this investigation. The chemical analysis of the 2. 5-centimeter- (1-in. -)

diameter bar stock, as reported by the manufacturer, is given in the following table:

Element Content,

wt %

Al 7.8

Mo 1.0

V 1.0

C .023

Fe .05

N .011

O .07

H .007

Ti Balance

The room-temperature mechanical properties reported by the manufacturer are yield

strength, 980 MN/m2 (142 ksi); ultimate strength, 1020 MN/m 2 (148 ksi); elongation,
20 percent; reduction of area, 40 percent.

In this study, tubular specimens were used. Their room-temperature mechanical

properties in the machined and chemically milled condition are as follows: ultimate

tensile strength, 1030 MN/m 2 (150 ksi); elongation, 18 percent; and apparent reduction

of area, 33 percent (based on outside diameter of an assumed solid specimen). Litera-

ture creep data (ref. 5) and the previously determined 96-hour-continuous-exposure

hot-salt stress-corrosion crack threshold curve (chemically milled specimens exposed

in static air) (ref. 6) for this alloy are presented in figure 1.

Specimens

Tubular specimens of the type illustrated in figure 2 were used in this investigation.

The specimens were machined from as-received bar stock and then stress relieved by

chemical milling (ref. 5) in a solution of 3-percent hydrofluoric acid, 30-percent nitric

acid, and 67-percent water. Approximately 0.002 centimeter (0.001 in.) of metal was

removed from all surfaces of these specimens.

Test Procedure

Salt coating. - All the test specimens were precoated with chemically pure sodium

chloride immediately prior to stress-corrosion exposure. The average coating
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amounted to about 0.1 mg/cm 2 (0.6 mg/in. 2). This concentration was within the range
measured on service airfoils (ref. 11). The salt was uniformly deposited on the bore
of unstressed specimens at 2000 C (4000 F) in the dynamic air salting apparatus illu-
strated in figure 3. Details of the salting technique and the dynamic air apparatus can
be found in reference 5, 6, or 12.

Stress-corrosion exposure. - Subsequent to being coated with salt, specimens were
creep exposed in static air in a standard lever-arm creep-loading frame. Specimens
were stressed over the range 210 to 760 MN/m 2 (30 to 110 ksi). Stresses were cycled
by automatically lowering and raising the load pan of the creep frame. Timers were
used to control both the stress and temperature cycles. The two exposure tempera-
tures studied were 3200 and 4300 C (6000 and 8000 F).

Specimens were subjected to one type of combined temperature and stress cycle,
to four types of temperature cycle, and to one type of stress cycle. All the exposure
cycles (A to F) used in this investigation are illustrated in figure 4. In all cases the
total time at the 3200 C (6000 F) exposure temperature was 96 hours, and the total time
at the 4300 C (8000 F) exposure temperature was 96 hours.

A quartz lamp furnace was used to reduce the time required to heat specimens to
the stress-corrosion exposure temperatures. The thermal profiles resulting from the
use of this furnace are shown in figure 5. Heating times from room temperature to the
two exposure temperatures were 3 and 5 minutes, respectively. For the 1 hour on/
1 hour off and 3 hours on/1 hour off thermal cycles, the specimens cooled to only about
750 C (1700 F) instead of to room temperature (350 C (950 F)). The subsequent heating
times to the two exposure temperatures for these cycles were about 2 and 3 minutes, re-
spectively. These rapid heating and cooling rates were intended to simulate those exper-
ienced by typical turbine engine compressor components during startup and shutdown.
posure to determine residual ductility. Tensile testing was conducted at room temper-
ature at a constant crosshead speed of 0.01 cm/min (0.005 in./min). These tensile
testing conditions had previously been determined to provide high sensitivity to em-
brittlement resulting from stress-corrosion (ref. 12). Elongation was measured over
a 2.54-centimeter (1.00-in.) gage length. Apparent-reduction-of-area data were de-
termined from changes of only the outside diameter of the tubular specimens. A com-
plete listing of all test conditions and results is contained in table I.

Post-test evaluation. - After tensile testing the fracture surface of each specimen
was examined under a microscope at 30X for evidence of stress-corrosion cracking.
Cracks as small as 0.003 centimeter (0.001 in.) deep could be identified (ref. 6). They
were covered with oxides and corrosion products and located at the origin of a distinct
crescent-shaped fracture plane on the fracture surface. For example, a crack only
0.007 centimeter (0.003 in.) deep is apparent in figure 6. This type of cracking def-
initely occurred during the hot-salt stress-corrosion exposure. Such an examination
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of the fractured specimen surfaces then allowed a crack threshold stress curve to be

determined.
Measurement of deposited salt. - Concentrations of deposited salt were measured

on the bore of each of the fractured specimens (table I). The reported concentrations

represent the average of the values measured on each of the two broken portions.

These measurements were made with a commercially available, chemical titration

technique for soluble chlorides (ref. 13).

RESULTS AND DISCUSSION

Combined Temperature and Stress Cycling

One cycle was studied in which both temperature and stress were cycled simulta-

neously. Specimens were stressed and heated to the exposure temperatures, held for

1 hour, and then unstressed and allowed to cool to room temperature for 3 hours. This

cycle was repeated 96 times so that the total exposure time for both temperature and

stress was 96 hours. This cycle was chosen to simulate a time-temperature flight

profile of turbine aircraft.

The hot-salt stress-corrosion crack threshold curve determined for this combined
temperature and stress cyclic exposure is shown in figure 7 (cycle A). The crack
threshold stresses at both exposure temperatures, 3200 and 4300 C (6000 and 8000 F),
are about twice the stresses determined for continuous exposures (ref. 6). It is pos-

sible that the threshold stress at the lower exposure temperature of 3200 C (6000 F)
may be even greater than the 760 MN/m 2 (110 ksi) indicated in figure 7. Normal, un-
salted creep-rupture limitations of the Ti-8A1-1Mo-1V alloy precluded exposing speci-
mens at any higher stress levels (fig. 1).

It is immediately apparent from these combined temperature and stress cyclic tests
that such cyclic exposures substantially reduce the detrimental effects of hot-salt
stress-corrosion. Specifically, crack threshold stresses were substantially greater for
cyclic exposures than for continuous exposures for equivalent total times. However,
the individual roles of cyclic temperature and cyclic stress exposures can not be as-
certained from the results determined for a combined temperature and stress cycle.
The following two sections of this report are concerned with the specific, individual
roles of both temperature and stress.

Temperature Cycling

The crack threshold curves determined in this investigation for four different cyclic
temperature exposures are also presented in figure 7. For all cycles, specimens were
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stressed continuously during the test (during heating, during time at the exposure tem-
peratures, and during cooling). For all cycles, the total time at the exposure tem-
perature was 96 hours.

Cycle B - 1 hour on/3 hours off. - This temperature cycle resulted in crack thresh-
old stresses approximately 100 percent greater than those determined for continuous
exposures at both exposure temperatures, 3200 and 4300 C (6000 and 8000 F). This
threshold curve is equivalent to that determined for the combined temperature and
stress cycle (cycle A, 1 hour on/3 hours off) discussed in the previous section.

Cycle C - 3 hours on/3 hours off. - This temperature cycle resulted in a crack
threshold stress about 90 percent greater than that determined for the continuous-
exposure baseline at 3200 C (6000 F). However, no difference was observed between
this cyclic exposure and continuous exposures at the higher temperature of 4300 C
(8000 F).

Cycle D - 1 hour on/1 hour off. - This temperature cycle resulted in a threshold
stress about 60 percent greater than that determined for continuous exposure at the
lower exposure temperature of 3200 C (6000 F). No difference between this cyclic ex-
posure and continuous exposure was determined at the higher exposure temperature of
4300 C (8000 F).

Cycle E - 3 hours on/1 hour off. - This temperature cycle resulted in a threshold
curve identical to that determined for cycle D. Specifically, this temperature cycle
resulted in a crack threshold stress about 60 percent greater than that determined for
continuous exposures at 3200 C (6000 F). No difference between this cyclic exposure
and continuous exposure was determined at the higher exposure temperature of 4300 C
(8000 F).

The increases in crack threshold stresses observed for some of these cyclic tem-
perature exposures are consistent with previously reported increases in crack nuclea-
tion times. The investigations of the effects of cyclic thermal exposures reported in
the literature range from qualitative observations to elaborate simulated engine cyclic
exposures. However, in all cases only the exposure temperature was cycled while the
stress applied to the specimen remained constant.

It has been reported that for temperature cycling between 3400 and 220 C (6500
and 720 F) cracks that formed in the Ti-8Al-1Mo-IV alloy during any given cycle did
not propagate during subsequent cycles - new cracks formed instead (ref. 7). Increased
embrittlement was reported for the Ti-8Al-1Mo-1V alloy as the duration of each ther-
mal cycle at 2900 C (5500 F) was increased from 2 to 16 hours. The total exposure
times ranged from 50 to 800 hours (ref. 8). In another study (ref. 9), no cracking was
observed in the Ti-8Al-1Mo-1V alloy for a cycle consisting of 2. 5 hours at 2900 C
(5500 F) and 10 minutes at 220 C (720 F) for a total exposure time of 2000 hours. Sim-
ilar exposure in a continuous mode resulted in severe stress-corrosion cracking.
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A more extensive investigation (ref. 10) with several titanium alloys indicated that

both the cyclic time at the exposure temperature and the subsequent time at room tem-

perature were important. Crack nucleation times were extended from 54 hours to in

excess of 168 hours at 2900 C (5500 F) only when the time at temperature was less than

that required to form the corrosion product titanium dichloride (TiC12) (<3 hr) and

only when the time near or at room temperature was long enough to result in the de-

composition of the same corrosion product (>5 hr). Therefore, it appears that titanium

dichloride is the chemical species to whose formation and/or decomposition crack

nucleation is related.

Additional support for this concept has been reported by other investigators.

Titanium dichloride has been postulated (ref. 14) to be an intermediate corrosion

product in a sequence of chemical reactions which ultimately result in the embrittling

corrosion product hydrogen. Titanium dichloride is easily hydrolyzed to titanium ox-

ide when exposed to a moist environment. Presumably, such hydrolysis would be a

function of the relative humidity at or near room temperature. Therefore, not only are

the effects of cyclic thermal exposures determined in this investigation consistent with

the general effect of increased crack nucleation times reported in the literature, but

the relation between the cyclic time at the exposure temperature and the cyclic cooling

time is consistent with the role of titanium dichloride postulated by others. The re-

sults of this investigation have shown that for a significant beneficial effect to result

from limiting exposure time to 1 hour per cycle, such an exposure must be followed by

a cooling time of about 3 hours. For example, the 1 hour on/3 hours off cycle increased

threshold stresses by about 100 percent compared with the baseline, whereas the

1 hour on/i hour off cycle resulted in an increase in threshold stress of only 60 percent

or less. As noted in the section Test Procedure, cooling cycles of 1 hour resulted in

minimum specimen temperatures of about 750 C (1700 F) as compared with tempera-

tures of about 350 C (950 F) resulting from 3-hour cooling cycles. The influence of

this slight temperature differential on the process of decomposition of titanium di-

chloride is not known by the authors and, therefore, has not been considered in this

report.

It is unlikely that the beneficial effects of cycling exposure temperature are re-

lated to hydrogen other than the fact that hydrogen generation is directly controlled by

the corrosion product titanium dichloride. Since the diffusion rate of hydrogen de-

creases during the cooling portion of the cycle, and since the specimens were stressed

continuously during the entire exposure cycle, it is improbable that local concentra-

tions of hydrogen tended to decrease. However, it is possible that the oxide formed dur-

ing hydrolysis near room temperature would retard further corrosion and hydrogen ab-

sorption during subsequent reheating cycles.
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Stress Cycling

The crack threshold curve determined under stress-cycling conditions is also
shown in figure 7. Cycle F consisted of stressing the specimens for 1 hour and then
releasing the load for 3 hours. This cycle was repeated 24 times while the specimens
were held at the exposure temperatures continuously for 96 hours. A substantial in-
crease of about 90 percent was determined for the cyclic threshold stress at 3200 C
(6000 F) as compared with the continuously stressed baseline threshold. However, at
4300 C (8000 F) there was no difference between cyclic and continuous threshold
stresses.

It is immediately apparent from these results that such a stress cycle is more ef-
fective in reducing hot-salt stress-corrosion cracking than either the D or E tempera-
ture cyclic exposures. In addition the threshold curve for this stress cycle is equiva-
lent to that determined for the C temperature cycle.

There are two possible roles that stress may play in the process of hot-salt stress-
corrosion cracking of titanium alloys. Stress may result in the mechanical rupture of
the normally protective oxide on titanium alloys or it may influence the diffusion and
segregation of corrosion-produced hydrogen.

It is the opinion of the authors that the mechanical rupture of the normally protec-
tive oxide by an applied stress plays a minor or nonexistent role in the process of hot-
salt stress-corrosion of titanium alloys. There is no experimental evidence that ap-
plied stress ruptures such oxides during isothermal hot-salt stress-corrosion expos-
ures, let alone during cyclic exposures. In addition it is unlikely that the process of
mechanical rupture would be altered so drastically over the temperature range 3200
to 4300 C (6000 to 8000 F). As was pointed out previously, cycling stress had a sig-
nificant beneficial effect at the lower exposure temperature and no effect at the higher
exposure temperature.

On the other hand the results determined in this investigation regarding the effect
of a cyclic stress exposure are consistent with several aspects of the role of hydrogen
in the process of hot-salt stress-corrosion. There is experimental evidence that hy-
drogen is produced during hot-salt stress-corrosion (refs. 3, 6, 12, and 14 to 17) and
that hydrogen segregates to highly stressed regions to concentration levels of the order
of thousands of parts per million (ref. 16). Previous research reported in the litera-
ture (ref. 15) had demonstrated that initially uniformly hydrogenated, tapered titanium
alloy specimens had the highest concentrations of hydrogen after creep exposure at the
region of highest stress. One of the present authors (ref. 16) has demonstrated that
corrosion-produced hydrogen segregates to below fracture surfaces and to the vicinity
of cracks in hot-salt stress-corroded titanium alloy specimens. Local concentrations
of hydrogen of several thousand ppm were measured on a microscopic scale as com-
pared with an average bulk concentration of only 100 ppm (ref. 16).
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Hence, it is apparent that the diffusion and segregation of corrosion-produced hy-

drogen are strongly influenced by applied stress and local stress concentrations.

Therefore, cyclic applications of stress have the potential of substantially altering the

distribution of hydrogen and the resultant severity of hot-salt stress-corrosion crack-

ing. The buildup of a high local concentration of hydrogen is severely hindered because

it can concentrate only during the short times when the stress is applied and then ho-

mogenization of the hydrogen occurs when the stress is removed.

We would expect such a process to be influenced by exposure temperature. At

higher exposure temperatures, increased corrosion and hydrogen diffusion rates and

higher hydrogen solubilities would result in an increased total hydrogen content and a

more homogeneous distribution of hydrogen. These effects would tend to mask any

beneficial effects of stress cycling at higher exposure temperatures, as evidenced by

the greater increases in cyclic threshold stress at 3200 C (6000 F) than at 4300 C

(8000 F), as compared with the continuous-exposure baseline threshold stress.

CONCLUDING REMARKS

Cyclic Exposures

This investigation has demonstrated for the first time that exposures in which simul-

taneous cycling of both temperature and stress occurs result in less susceptibility to hot-

salt stress-corrosion cracking of titanium alloys than continuous exposure at the same

temperature and stress. In addition, reduced susceptibility to cracking was also con-

firmed, as reported by others (refs. 7 to 10), for exposures where temperature but not

stress was cycled. These cyclic effects lend additional support to the already consider-

able body of evidence that suggests that corrosion-produced hydrogen is the embrittling

species in the process of hot-salt stress-corrosion. Some of these previously reported

facts are (1) embrittlement is sensitive to test strain rate and temperature (ref. 12);

(2) ductility can be recovered by vacuum annealing (ref. 12); (3) a noncorroded, brittle

zone exists at the crack tip ahead of the corrosion zone (ref. 17); and (4) thousands of

ppm of hydrogen have been measured in localized regions near fracture surfaces and

crack tips (ref. 16).

It is suggested that the following sequence of events occurs during elevated-

temperature hot-salt stress-corrosion exposures: Corrosion-produced hydrogen dif-

fuses to regions of high triaxial stress, such as beneath corrosion pits and at crack

tips. Such hydrogen-enriched regions are embrittled and crack normal to the direction

of applied stress. Cracks propagate through the embrittled region until blunted by

plastic deformation in the ductile matrix. Further cracking requires additional dif-

fusion of hydrogen and embrittlement of the region in front of the new crack tip. This
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sequential process can continue as long as sufficient hydrogen is supplied by the cor-

rosion reactions occurring near the crack mouth and as long as the favorable conditions

of high temperature and stress-induced diffusion are not interrupted.

It is probable that the effects of surface condition and alloy and phase composition

are most significant during initial surface corrosion. Hydrogen absorption is known to

be affected by alloy composition and crystal structure (refs. 18 to 20). Processing

and heat-treating variables which affect alloy microstructure can exert an influence

both on the hydrogen embrittlement characteristics (refs. 21 and 22) and on the crack

propagation or fracture toughness characteristics of the alloy (refs. 23 to 25).

Exposure cycle has the potential of being the most influential of the variables that

affect hot-salt stress-corrosion of titanium alloys. Cycling stress can reduce the em-

brittling influence of stress-induced diffusion and segregation of corrosion-produced

hydrogen. Cycling temperature can lessen an alloy's susceptibility to stress-corrosion

by retarding the production of the intermediate corrosion product titanium dichloride

and thereby directly reducing the production of hydrogen. It was also suggested

(ref. 14) that cyclic thermal exposures can be beneficial in reducing hydrogen absorp-

tion if protective oxides are formed during the room-temperature portion of the thermal
cycle. In summary, cyclic exposures have a beneficial effect on all stages of the pro-
cess of hot-salt stress-corrosion and can significantly reduce the detrimental effect of

some individual stages of the stress-corrosion process.

Relation of Hot-Salt Stress-Corrosion to Turbine Engine Operation

Previous investigations by the authors (refs. 5 and 6) have demonstrated that the

major variables influencing hot-salt stress-corrosion are (1) the processing conditions,
heat-to-heat variations, and composition of the alloy; and (2) the specimen surface con-

dition. This investigation has shown that exposure cycle is also a major variable.

Under simulated compressor environmental conditions, hot-salt stress-corrosion
cracking of the commonly used Ti-6A1-4V alloy occurred only at stresses greater than

the creep design limits of the alloy. Since most compressor components are shot

peened to increase fatigue resistance, these components also exhibit increased re-

sistance to stress-corrosion. Cyclic exposures to stress-corrosion conditions are not

as detrimental as are continuous exposures for equivalent total times.

These major variables affecting susceptibility of titanium alloys to hot-salt stress-

corrosion explain the lack of service failures of titanium components in current gas-

turbine engines. However, there is still reason for concern that there may be some

service failures in the future as developmental engines call for newer, stronger ti-

tanium alloys such as Ti-5A1-6Sn-2Zr-1Mo-0.2Si. The susceptibility of this alloy to
hot-salt stress-corrosion cracking is extremely sensitive to processing conditions
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(ref. 6). Such alloys are intended for use at high operating stresses and temperatures
and for long cyclic periods at peak thrust. Under such operating conditions the bene-
ficial effects of both cyclic exposures and shot peening would be reduced.

SUMMARY OF RESULTS

The purpose of this investigation was to determine the influence of exposure cycle
on the hot-salt stress-corrosion cracking resistance of a titanium alloy. Salt-coated

specimens of the Ti-8Al-lMo-1V alloy were creep exposed at temperatures of 3200

and 4300 C (6000 and 8000 F). Both temperature and stress were cycled simultaneously
to simulate a service cycle for current turbine-powered aircraft. Temperature and

stress were also cycled independently to determine their individual effects. For all

cycles, the total time at the exposure temperatures was 96 hours. The results ob-

tained from these cyclic exposures were then compared with the baseline 96-hour-
continuous-exposure hot-salt stress-corrosion crack threshold. They are as follows:

1. In general, all the cyclic exposures studied in this investigation resulted in

higher hot-salt stress-corrosion crack threshold stresses than did the baseline, con-

tinuous exposure for the same total exposure time.

2. A specific cycle of both temperature and stress being applied to specimens for

1 hour and then removed for 3 hours resulted in crack threshold stresses about 100 per-
cent greater than the continuous-exposure baseline threshold stresses at both exposure

temperatures.

3. For a temperature cycle consisting of 1 hour on and 3 hours off, the crack
threshold stress was 100 percent greater than the baseline at both exposure temper-
atures.

4. For a temperature cycle of 3 hours on and 3 hours off, the crack threshold
stress was increased about 90 percent at 3200 C (6000 F). For temperature cycles of
1 hour on and 1 hour off and 3 hours on and 1 hour off, the crack threshold stress was
about 60 percent greater than the baseline at 3200 C (6000 F). No change in threshold
stress from the baseline was observed at 4300 C (8000 F) for any of these three cyclic
temperature exposures.

5. A cyclic stress exposure of 1 hour on and 3 hours off resulted in a crack thresh-
old stress at 3200 C (6000 F) that was about 90 percent greater than the baseline. No
change in threshold stress from the continuous-exposure baseline was observed at
4300 C (8000 F) for the cyclic stress exposure.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, August 26, 1974,
501-21.
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TABLE I. - HOT-SALT STRESS-CORROSION CRACKING CYCLIC EXPOSURE DATA

Spec- Exposure conditions Tensile test data Salt concentration Heat-tinted

Temperature Stress Ultimate Fracture Apparent Elongation, mg/cm
2 

mg/in. 2  
cracks

stress stress reduction percent°C OF MN/m2
ksi of area,

2 2 of area,
MN/m 2 

ksi MN/m 2 
ksi percent

percent

Cycle A - temperature and stress 1 hr on/3 hr off

478 320 600 620 90 1020 148 910 132 34 19 0.11 0.7 No
472 320 600 760 110 1110 161 990 144 32 15 .05 .3
486 320 600 760 110 1140 165 1060 154 28 11 .08 .5
470 430 800 280 40 1010 147 970 141 32 16 .11 .7
477 430 800 350 50 1020 148 1020 148 14 7 .14 .9 Yes

Cycle B - temperature 1 hr on/3 hr off

466 320 600 620 90 1020 148 940 137 31 16 0. 16 1 No
487 690 100 1040 151 920 134 33 18 .05 .3
496 760 110 1100 159 990 144 27 13 .08 .5
490 760 110 1080 157 940 137 35 16 .08 .5
400 430 800 280 40 1030 150 1030 150 12 8 . 16 1
450 280 40 1020 148 890 129 37 18 .09 .6
464 350 50 1010 146 1010 146 10 5 .14 .9 Yes
474 4 350 50 940 137 940 137 6 1 .11 .7 Yes

Cycle C - temperature 3 hr on/3 hr off

499 320 600 620 90 1030 149 910 132 35 16 0.06 0.4 No
485 320 600 690 100 1030 150 940 136 26 17 .05 .3 No
492 320 600 760 110 1020 148 1020 148 17 11 .06 .4 Yes
469 430 800 210 30 1020 148 1020 148 13 10 .16 1
463 430 800 240 35 830 120 830 120 4 1 .11 .7
391 430 800 280 40 970 141 970 141 7 2 .14 .9

Cycle D - temperature 1 hr on/1 hr off

482 320 600 480 70 1010 147 950 138 26 16 0. 11 0.7 No
484 320 600 550 80 1010 147 890 129 34 19 .09 .6 No
483 320 600 620 90 1010 146 1010 146 10 5 .09 .6 Yes
455 430 800 210 30 760 110 760 110 4 1 .14 .9 Yes
459 430 800 280 40 940 136 940 136 7 1 .08 .5 Yes

Cycle E - temperature 3 hr on/1 hr off

488 320 600 480 70 1030 149 920 133 33 16 0. 08 0.5 No
494 320 600 550 80 1010 147 920 133 32 18 .11 .7 No
493 320 600 620 90 1030 149 1030 149 16 10 .08 .5 Yes
460 430 800 210 30 1020 148 1020 148 12 9 .11 .7 Yes
442 430 800 240 35 900 131 900 131 6 1 .09 .6 Yes

Cycle F - stress 1 hr on/3 hr off

489 320 600 480 70 1010 146 890 129 36 19 0. 09 0. 6 No
501 550 80 1010 147 900 130 37 19 .06 .4
500 620 90 1010 147 890 129 35 20 .08 .5
498 620 90 1030 150 920 134 33 18 .14 .9
497 690 100 1020 148 950 138 26 15 .09 .6
491 1 1 690 100 1040 151 1040 151 17 10 .09 .6 Yes
454 430 800 210 30 960 139 960 139 4 1 .14 .9 Yes
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Figure 1. - Baseline creep and 96-hour-continuous-exposure hot-salt stress-
corrosion crack threshold data. (Chemically milled tubular specimens tested
in static air. )

Vent

0. 889 (0.350) diam Mixing
V5/8-18 NF chamber-

0. 635 (0. 250) diam -Service air -- Specimenr-Service air

Air dryer Heater

- - - -Pressure regulator water

0. 94 (0. 371 rad 3. 5 (1. 4) 2. 5 (1. 0) - ,-- Fog

11.4 (4.5) Cooling - , -Salt water

water -Ultrasonic

Figure 2. - Tubular, titanium alloy specimens used in this investigation. generator

(Dimensions are in cm (in. ). Figure 3. - Apparatus for presalting unstressed specimens.
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Time,
hr

31 - 3

3 Cycle Number Total Total
code of time time

E cycles at tem- under
perature, stress,

hr hr

A 96 96 96

U 3 3

Time, hr
(a) Combined temperature and stress cycle.

1 1 1

B 96 96 384

3 3

3 C 32 96 192

E

I D 96 96 192

3 3 3

1 E 32 96 128

Time, hr
(b) Temperature cycles (constant stress applied throughout

cyclic test).
i 1 1

F 24 96 24

S3 3

Time, hr

(c) Stress cycle (temperature constant throughout cyclic test).

Figure 4. - Cyclic exposures used in this investigation.
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Figure 5. - Heating and cooling profiles of all thermal cycling tests.
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corrosion
crack---
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developed during ,
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Figure 6. - Photomacrograph of hot-salt stress-corrosion crack.
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Cycle Cycle type Time Number Total Total
code on/off, of time time

(fig. 4) hr/hr cycles at tem- under
perature, stress,

hr hr

A Temperature 113 96 96 96
and stress

B Temperature 1/3 96 384
C 3/3 32 192
D 1/1 96 192
E 3/1 32 128
F Stress 113 24 24

120 - Cycles
A,B

100
C, F

600 -
80C _ D, E

60 -
6

60 400-

40 - &

200 continuous

20 - exposure (ref. 6)

0 0I
300 325 350 375 400 425 450

Exposure temperature, OC

I I I I I
600 650 700 750 800

Exposure temperature, OF

Figure 7. - Cyclic hot-salt stress-corrosion crack thresholds of Ti-8AI-IMo-1V
alloy. (Data obtained only at 3200 and 4300 C (6000 and 8000 F. )
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