30,845 research outputs found
High pressure rotary piston coal feeder
This feeder concept uniquely combines the functions of solids feeding, metering, and pressurization into one compact system. Success with the rotary-piston concept would provide a lower-cost alternative to lock-hopper systems. The design of the feeder is presented, with special emphasis on the difficult problem of seal design. Initial tests will be to check seal performance. Subsequent tests will evaluate solids-feeding ability
Hierarchical solutions of the Sherrington-Kirkpatrick model: Exact asymptotic behavior near the critical temperature
We analyze the replica-symmetry-breaking construction in the
Sherrington-Kirkpatrick model of a spin glass. We present a general scheme for
deriving an exact asymptotic behavior near the critical temperature of the
solution with an arbitrary number of discrete hierarchies of the broken replica
symmetry. We show that all solutions with finite-many hierarchies are unstable
and only the scheme with infinite-many hierarchies becomes marginally stable.
We show how the solutions from the discrete replica-symmetry-breaking scheme go
over to the continuous one with increasing the number of hierarchies.Comment: REVTeX4, 11 pages, no figure
Parisi Phase in a Neuron
Pattern storage by a single neuron is revisited. Generalizing Parisi's
framework for spin glasses we obtain a variational free energy functional for
the neuron. The solution is demonstrated at high temperature and large relative
number of examples, where several phases are identified by thermodynamical
stability analysis, two of them exhibiting spontaneous full replica symmetry
breaking. We give analytically the curved segments of the order parameter
function and in representative cases compute the free energy, the storage
error, and the entropy.Comment: 4 pages in prl twocolumn format + 3 Postscript figures. Submitted to
Physical Review Letter
Absence of anomalous negative lattice-expansion for polycrystalline sample of Tb2Ti2O7
High resolution X-ray powder-diffraction experiments on a well-characterized
polycrystalline sample of the spin liquid Tb2Ti2O7 reveal that it shows normal
positive thermal-expansion above 4 K, which does not agree with the intriguing
anomalous negative thermal-expansion due to a magneto-elastic coupling reported
for a single crystal sample below 20 K. We also performed a Rietveld profile
refinement of a powder-diffraction pattern taken at a room temperature, and
confirmed that it is consistent with the fully ordered cubic pyrochlore
structure.Comment: 2 pages, 3 figure
Learners reconceptualising education: Widening participation through creative engagement?
This paper argues that engaging imaginatively with ways in which statutory and further education is provided and expanding the repertoire of possible transitions into higher education, is necessary for providers both in higher education and in the contexts and phases which precede study at this level. Fostering dispositions for creativity in dynamic engagement with educational technology together with the consideration of pedagogy, learning objects, inclusion, policy and the management of change, requires innovative provision to span the spaces between school, home, work and higher education learning. Reporting on The Aspire Pilot, a NESTA-funded initiative at The Open University, the paper offers the beginning of a theoretical frame for considering learning, learners and learning systems in the information age prioritizing learner agency. It will report emergent empirical findings from this inter-disciplinary project, with a significant e-dimension, which seeks to foster the creativity of 13-19 year olds in considering future learning systems, developing provocations for others to explore creative but grounded possibilities. It explores implications arising from this project for approaches that may facilitate widening participation in higher education
Laboratory studies in ultraviolet solar physics
The research activity comprised the measurement of basic atomic processes and parameters which relate directly to the interpretation of solar ultraviolet observations and to the development of comprehensive models of the component structures of the solar atmosphere. The research was specifically directed towards providing the relevant atomic data needed to perform and to improve solar diagnostic techniques which probe active and quiet portions of the solar chromosphere, the transition zone, the inner corona, and the solar wind acceleration regions of the extended corona. The accuracy with which the physical conditions in these structures can be determined depends directly on the accuracy and completeness of the atomic and molecular data. These laboratory data are used to support the analysis programs of past and current solar observations (e.g., the Orbiting solar Observatories, the Solar Maximum Mission, the Skylab Apollo Telescope Mount, and the Naval Research Laboratory's rocket-borne High Resolution Telescope and Spectrograph). In addition, we attempted to anticipate the needs of future space-borne solar studies such as from the joint ESA/NASA Solar and Heliospheric Observatory (SOHO) spacecraft. Our laboratory activities stressed two categories of study: (1) the measurement of absolute rate coefficients for dielectronic recombination and electron impact excitation; and (2) the measurement of atomic transition probabilities for solar density diagnostics. A brief summary of the research activity is provided
Unusual signatures of the ferromagnetic transition in the heavy Fermion compound UMnAl
Magnetic susceptibility results for single crystals of the new cubic
compounds UTAl (T=Mn, V, and Mo) are reported. Magnetization,
specific heat, resistivity, and neutron diffraction results for a single
crystal and neutron diffraction and inelastic spectra for a powder sample are
reported for UMnAl. For T = V and Mo, temperature independent Pauli
paramagnetism is observed. For UMnAl, a ferromagnetic transition is
observed in the magnetic susceptibility at = 20 K. The specific heat
anomaly at is very weak while no anomaly in the resistivity is seen at
. We discuss two possible origins for this behavior of UMnAl:
moderately small moment itinerant ferromagnetism, or induced local moment
ferromagnetism.Comment: 5 pages, 5 figures, to be published in Phys. rev.
VLBI study of water maser emission in the Seyfert 2 galaxy NGC5793. I: Imaging blueshifted emission and the parsec-scale jet
We present the first result of VLBI observations of the blueshifted water
maser emission from the type 2 Seyfert galaxy NGC5793, which we combine with
new and previous VLBI observations of continuum emission at 1.7, 5.0, 8.4, 15,
and 22 GHz. Maser emission was detected earlier in single-dish observations and
found to have both red- and blueshifted features relative to the systemic
velocity. We could image only the blueshifted emission, which is located 3.6 pc
southwest of the 22 GHz continuum peak. The blueshifted emission was found to
originate in two clusters that are separated by 0.7 milliarcsecond (0.16 pc).
No compact continuum emission was found within 3.6 pc of the maser spot. A
compact continuum source showing a marginally inverted spectrum between 1.7 and
5.0 GHz was found 4.2 pc southwest of the maser position. The spectral turnover
might be due to synchrotron self-absorption caused by a shock in the jet owing
to collision with dense gas, or it might be due to free-free absorption in an
ionized screen possibly the inner part of a disk, foreground to the jet.
The water maser may be part of a maser disk. If so, it would be rotating in
the opposite sense to the highly inclined galactic disk observed in CO
emission. We estimate a binding mass within 1 pc of the presumed nucleus to be
on the order of 10^7 Msun. Alternatively, the maser emission could result from
the amplification of a radio jet by foreground circumnuclear molecular gas. In
this case, the high blueshift of the maser emission might mean that the masing
region is moving outward away from the molecular gas surrounding an active
nucleus.Comment: 20 pages, 6 figures, to appear in ApJ, Oct. 200
Optimally adapted multi-state neural networks trained with noise
The principle of adaptation in a noisy retrieval environment is extended here
to a diluted attractor neural network of Q-state neurons trained with noisy
data. The network is adapted to an appropriate noisy training overlap and
training activity which are determined self-consistently by the optimized
retrieval attractor overlap and activity. The optimized storage capacity and
the corresponding retriever overlap are considerably enhanced by an adequate
threshold in the states. Explicit results for improved optimal performance and
new retriever phase diagrams are obtained for Q=3 and Q=4, with coexisting
phases over a wide range of thresholds. Most of the interesting results are
stable to replica-symmetry-breaking fluctuations.Comment: 22 pages, 5 figures, accepted for publication in PR
Two dimensionality in quasi one-dimensional cobalt oxides
By means of muon spin rotation and relaxation (SR) techniques, we have
investigated the magnetism of quasi one-dimensional (1D) cobalt oxides
CoO (=Ca, Sr and Ba, =1, 2, 3, 5 and
), in which the 1D CoO chain is surrounded by six equally spaced
chains forming a triangular lattice in the -plane, using polycrystalline
samples, from room temperature down to 1.8 K. For the compounds with =1 - 5,
transverse field SR experiments showed the existence of a magnetic
transition below 100 K. The onset temperature of the transition () was found to decrease with ; from 100 K for =1 to 60 K for
=5. A damped muon spin oscillation was observed only in the sample with
=1 (CaCoO), whereas only a fast relaxation obtained even at 1.8
K in the other three samples. In combination with the results of susceptibility
measurements, this indicates that a two-dimensional short-range
antiferromagnetic (AF) order appears below for all
compounds with =1 - 5; but quasi-static long-range AF order formed only in
CaCoO, below 25 K. For BaCoO (=), as decreased
from 300 K, 1D ferromagnetic (F) order appeared below 53 K, and a sharp 2D AF
transition occurred at 15 K.Comment: 12 pages, 14 figures, and 2 table
- …