We analyze the replica-symmetry-breaking construction in the
Sherrington-Kirkpatrick model of a spin glass. We present a general scheme for
deriving an exact asymptotic behavior near the critical temperature of the
solution with an arbitrary number of discrete hierarchies of the broken replica
symmetry. We show that all solutions with finite-many hierarchies are unstable
and only the scheme with infinite-many hierarchies becomes marginally stable.
We show how the solutions from the discrete replica-symmetry-breaking scheme go
over to the continuous one with increasing the number of hierarchies.Comment: REVTeX4, 11 pages, no figure