494 research outputs found
Van Allen Probes show that the inner radiation zone contains no MeV electrons: ECT/MagEIS data
Abstract
We present Van Allen Probe observations of electrons in the inner radiation zone. The measurements were made by the Energetic Particle, Composition, and Thermal Plasma/Magnetic Electron Ion Spectrometer (MagEIS) sensors that were designed to measure electrons with the ability to remove unwanted signals from penetrating protons, providing clean measurements. No electrons \u3e900 keV were observed with equatorial fluxes above background (i.e., \u3e0.1 el/(cm2 s sr keV)) in the inner zone. The observed fluxes are compared to the AE9 model and CRRES observations. Electron fluxes \u3c200 keV exceeded the AE9 model 50% fluxes and were lower than the higher-energy model fluxes. Phase space density radial profiles for 1.3 ≤ L* \u3c 2.5 had mostly positive gradients except near L*~2.1, where the profiles for μ = 20–30 MeV/G were flat or slightly peaked. The major result is that MagEIS data do not show the presence of significant fluxes of MeV electrons in the inner zone while current radiation belt models and previous publications do
An empirically observed pitch-angle diffusion eigenmode in the Earth\u27s electron belt near L* = 5.0
Abstract Using data from NASA\u27s Van Allen Probes, we have identified a synchronized exponential decay of electron flux in the outer zone, near L* = 5.0. Exponential decays strongly indicate the presence of a pure eigenmode of a diffusion operator acting in the synchronized dimension(s). The decay has a time scale of about 4 days with no dependence on pitch angle. While flux at nearby energies and L* is also decaying exponentially, the decay time varies in those dimensions. This suggests the primary decay mechanism is elastic pitch angle scattering, which itself depends on energy and L *. We invert the shape of the observed eigenmode to obtain an approximate shape of the pitch angle diffusion coefficient and show excellent agreement with diffusion by plasmaspheric hiss. Our results suggest that empirically derived eigenmodes provide a powerful diagnostic of the dynamic processes behind exponential decays
The Magnetic Electron Ion Spectrometer (MagEIS) Instruments Aboard the Radiation Belt Storm Probes (RBSP) Spacecraft
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented
TRIO: Turbulent Response in Oxygen
This project was designed to build on the results from the successful launch of the Turbulent Oxygen Mixing Experiment (TOMEX) mother-daughter (instrumented and chemical-release) payload (21.126) that was launched in October 2000 from the White Sands Missile Range. The overall science objective was to investigate the evolution of the atmospheric response. at altitudes between 80 and 120 km, to the presence of unstable regions with vertical scales of the order of 1 to 10 km. TRIO was designed to use Na lidar measurements from the MAUUMALT observation on MAUI with a launch of a payload from Pacific Missile Range Facility (PMRF), located on Kauai. During this project, Aerospace participated in a Mission Initiation Conference. put together a science requirements document. performed a site visit to PMRF. prepared a CDR document. and developed a production and calibration procedure for one of the payload instruments. the 3-channel photometer. Unfortunately. NASA decided to terminate the program because of unforeseen (by NASA) range costs. This CDR document represents our view of this project at termination and provides a roadmap to perform this experiment should it be proposed again
Airglow Emissions and Oxygen Mixing Ratios from the Photometer Experiment on the Turbulent Oxygen Mixing Experiment (TOMEX)
The Turbulent Oxygen Mixing Experiment (TOMEX) combined Na lidar measurements from Starfire Optical Range in Albuquerque, New Mexico, with a launch of a payload from White Sands Missile Range (WSMR), located a little over 100 km from Starfire. The payload included a trmethyl aluminum release to measure winds and diffusion, a 5-channel ionization gauge to measure neutral densities, and a 3-channel photometer experiment to measure atomic oxygen related airglow. The payload was launched at 0957 UT on 26 October 2000 and successfully obtained data from all the experiments. The photometer experiment consisted of three liquid nitrogen cooled filter photometers which measured emission from the O2 atmospheric band (0, 0) emission, the OH Meinel (9, 4) band, and the OI(557.7 nm) greenline. Measurements were made as the rocket went from 80 to 110 km on the upleg. The pointing of the photometers was within a few degrees of zenith. Differentiating these data allowed volume emission rates to be derived which can be inverted to form atomic oxygen density profiles. The interpretation of the data made use of simultaneous atmospheric temperature data from the Na lidar. The airglow data showed lower brightness values and lower peak altitudes for the O2 atmospheric (0, 0) band and OI(557.7 nm) emissions than predicted by the thermosphere/ ionosphere/mesopshere/electrodynamics general circulation (TIME-GCM) model. The peak altitude of the OH Meinel emission seemed nominal. Inverting the O2 atmospheric (0, 0) and OI(557.7 nm) data following McDade et al. [1986] produced O density profiles whose peak densities and peak altitudes are lower than the model values. The shape of the O density profile is also more constant with altitude than model predictions. The O mixing ratio shows a more altitude-independent profile than given by the model, especially between 85 and 95 km. Significant deviations in the measured shape of the mixing ratio also occur at 90, 97, and 102 km. The interpretation of these data is that the O mixing ratio was significantly perturbed by the passage of an atmospheric gravity wave or tide and the subsequent convective or dynamical instabilities produced by that wave. Dynamically or convectively unstable layers at 90, 97, and 102 km at the time of the launch also appear to be reflected in the mixing ratio data
Van Allen Probes observations of direct wave-particle interactions
Abstract Quasiperiodic increases, or bursts, of 17-26 keV electron fluxes in conjunction with chorus wave bursts were observed following a plasma injection on 13 January 2013. The pitch angle distributions changed during the burst events, evolving from sinN(α) to distributions that formed maxima at α = 75-80°, while fluxes at 90° and \u3c60° remained nearly unchanged. The observations occurred outside of the plasmasphere in the postmidnight region and were observed by both Van Allen Probes. Density, cyclotron frequency, and pitch angle of the peak flux were used to estimate resonant electron energy. The result of ∼15-35 keV is consistent with the energies of the electrons showing the flux enhancements and corresponds to electrons in and above the steep flux gradient that signals the presence of an Alfvén boundary in the plasma. The cause of the quasiperiodic nature (on the order of a few minutes) of the bursts is not understood at this time
Science Goals and Overview of the Radiation Belt Storm Probes (RBSP) Energetic Particle, Composition, and Thermal Plasma (ECT) Suite on NASA’s Van Allen Probes Mission
The Radiation Belt Storm Probes (RBSP)-Energetic Particle, Composition, and Thermal Plasma (ECT) suite contains an innovative complement of particle instruments to ensure the highest quality measurements ever made in the inner magnetosphere and radiation belts. The coordinated RBSP-ECT particle measurements, analyzed in combination with fields and waves observations and state-of-the-art theory and modeling, are necessary for understanding the acceleration, global distribution, and variability of radiation belt electrons and ions, key science objectives of NASA’s Living With a Star program and the Van Allen Probes mission. The RBSP-ECT suite consists of three highly-coordinated instruments: the Magnetic Electron Ion Spectrometer (MagEIS), the Helium Oxygen Proton Electron (HOPE) sensor, and the Relativistic Electron Proton Telescope (REPT). Collectively they cover, continuously, the full electron and ion spectra from one eV to 10’s of MeV with sufficient energy resolution, pitch angle coverage and resolution, and with composition measurements in the critical energy range up to 50 keV and also from a few to 50 MeV/nucleon. All three instruments are based on measurement techniques proven in the radiation belts. The instruments use those proven techniques along with innovative new designs, optimized for operation in the most extreme conditions in order to provide unambiguous separation of ions and electrons and clean energy responses even in the presence of extreme penetrating background environments. The design, fabrication and operation of ECT spaceflight instrumentation in the harsh radiation belt environment ensure that particle measurements have the fidelity needed for closure in answering key mission science questions. ECT instrument details are provided in companion papers in this same issue. In this paper, we describe the science objectives of the RBSP-ECT instrument suite on the Van Allen Probe spacecraft within the context of the overall mission objectives, indicate how the characteristics of the instruments satisfy the requirements to achieve these objectives, provide information about science data collection and dissemination, and conclude with a description of some early mission results
High-latitude E Region Ionosphere-thermosphere Coupling: A Comparative Study Using in Situ and Incoherent Scatter Radar Observations
We present in situ and ground-based measurements of the ratio k of ion cyclotronangular frequency to ion-neutral momentum transfer collision frequency to investigateionosphere-thermosphere (IT) coupling in the auroral E region. In situ observations were obtained by NASA sounding rocket 36.234, which was launched into the nightsideE region ionosphere at 1229 UT on 19 January 2007 from Poker Flat, AK. The payload carried instrumentation to determine ion drift angle and electric field vectors. Neutral winds were measured by triangulating a chemical tracer released from rocket 41.064 launched two minutes later. k is calculated from the rotation of the ion drift angle relative to the E-cross-B drift direction in a frame co-rotating with the payload. Between the altitudes of 118 km and 130 km k increases exponentially with a scale height of 9.3 +/- 0.7 km, deviating from an exponential above 130 km. k = 1 at an altitude z(sub0) of 119.9 +/- 0.5 km. The ratio was also estimated from Poker Flat Incoherent Scatter Radar (PFISR) measurements using the rotation of ion velocity with altitude. Exponential fits to the PFISR measurements made during the flight of 41.064 yield z(sub0) 115.9 +/- 1.2 km and a scale height of 9.1 +/- 1.0 km. Differences between in situ and ground-based measurements show that the E region atmospheric densities were structured vertically and/or horizontally on scales of 1 km to 10 km. There were no signs of ionospheric structure in ion density or ion temperature below scales of 1 km. The observations demonstrate the accuracy with which the in situ and PFISR data may be used as probes of IT coupling
- …