17 research outputs found

    A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry Mechanisms

    Get PDF
    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably

    Ozone and PAN formation inside and outside of the Berlin plume - process analysis and numerical process simulation

    No full text
    During the BERLIOZ field phase on 20 July 1998 a 40 km wide ozone-plume 30 to 70 km north of Berlin in the lee of the city was detected. The ozone mixing ratio inside the plume was app. 15 ppb higher than outside, mainly caused by high ozone precursor emissions in Berlin, resulting in a net chemical ozone production of 6.5 ppb h(-1), which overcompensates ozone advection of -3.6 ppb h(-1) and turbulent diffusion of -1.1 ppb h(-1). That means, although more ozone leaves the control volume far in the lee of Berlin than enters it at the leeside cityborder and although turbulent diffusion causes a loss of ozone in the leeside control volume the chemical production inside the volume leads to a net ozone increase. Using a semi-Lagrangian mass budget method to estimate the net ozone production, 5.0 ppb h(-1) are calculated for the plume. This means a fraction of about 20% of ozone in the plume is produced by local emissions, therefore called 'home made' by the Berlin emissions. For the same area KAMM/DRAIS simulations using an observation based initialisation, results in a net production rate between 4.0 and 6.5 ppb h(-1), while the threefold nested EURAD model gives 6.0 ppb h(-1). The process analysis indicates in many cases good agreement (10% or better) between measurements and simulations not only in the ozone concentrations but also with respect to the physical and chemical processes governing the total change. Remaining differences are caused by different resolution in time and space of the models and measurements as well as by errors in the emission calculation.The upwind-downwind differences in PAN concentrations are partly similar to those of ozone, because in the BERLIOZ case they are governed mainly by photochemical production. While in the stable boundary layer at night and windward of Berlin 0.1 to 0.3 ppb are detected, in the centre of the plume at noon concentrations between 0.75 ppb and 1.0 ppb are measured. The O-3/PAN ratio is about 80 to 120 and thus due to the relatively low PAN concentrations significantly higher than found in previous studies. The low PAN formation on 20 July, was mainly restricted by the moderate nonmethane hydrocarbon levels, whereas high PAN concentrations of 3.0 ppb on 21 July, are caused by local production in the boundary layer and by large scale advection aloft
    corecore