32,427 research outputs found

    Revisiting He-like X-ray Emission Line Plasma Diagnostics

    Get PDF
    A complete model of helium-like line and continuum emission has been incorporated into the plasma simulation code Cloudy. All elements between He and Zn are treated, any number of levels can be considered, and radiative and collisional processes are included. This includes photoionization from all levels, line transfer including continuum pumping and destruction by background opacities, scattering, and collisional processes. The model is calculated self-consistently along with the ionization and thermal structure of the surrounding nebula. The result is a complete line and continuum spectrum of the plasma. Here we focus on the ions of the He I sequence and reconsider the standard helium-like X-ray diagnostics. We first consider semi-analytical predictions and compare these with previous work in the low-density, optically-thin limit. We then perform numerical calculations of helium-like X-ray emission (such as is observed in some regions of Seyferts) and predict line ratios as a function of ionizing flux, hydrogen density, and column density. In particular, we demonstrate that, in photoionized plasmas, the RR-ratio, a density indicator in a collisional plasma, depends on the ionization fraction and is strongly affected by optical depth for large column densities. We also introduce the notion that the RR-ratio is a measure of the incident continuum at UV wavelengths. The GG-ratio, which is temperature-sensitive in a collisional plasma, is also discussed, and shown to be strongly affected by continuum pumping and optical depth as well. These distinguish a photoionized plasma from the more commonly studied collisional case.Comment: 28 pages, 7 figures, accepted to Ap

    Renal homotransplantation with venous outflow or infusion of antigen into the portal vein of dogs or pigs: Transplantation at portal site

    Get PDF
    Kidneys were transplanted in mongrel dogs so that renal venous drainage was into the portal system of the hosts. Thirty-one recipients were not treated, 11 were given one dose of 3 mg of azathioprine per kg, and 11 were given 2 mg of azathioprine per day. Survival was not statistically increased compared with that in three comparable series in which renal venous drainage was into the vena cava, nor were the histopathological findings favorably altered in the “portal” kidneys. The injection of semisoluble antigen into the portal vein at the same time as renal transplantation at the caval site, had an effect no different from that if the antigen were given systemically during caval site transplantation. The conclusion that drainage of grafts into the portal vein was not beneficial was reached in 20 pigs evenly divided between the portal and vena caval sites, and in 12 pairs of dog to pig or pig to dog xenografts. Thus, none of these experiments has identified an advantage of antigen delivery into the portal as opposed to the systemic venous system. © 1977 by The Williams & Wilkins Co

    Sheffield University CLEF 2000 submission - bilingual track: German to English

    Get PDF
    We investigated dictionary based cross language information retrieval using lexical triangulation. Lexical triangulation combines the results of different transitive translations. Transitive translation uses a pivot language to translate between two languages when no direct translation resource is available. We took German queries and translated then via Spanish, or Dutch into English. We compared the results of retrieval experiments using these queries, with other versions created by combining the transitive translations or created by direct translation. Direct dictionary translation of a query introduces considerable ambiguity that damages retrieval, an average precision 79% below monolingual in this research. Transitive translation introduces more ambiguity, giving results worse than 88% below direct translation. We have shown that lexical triangulation between two transitive translations can eliminate much of the additional ambiguity introduced by transitive translation

    Improved He I Emissivities in the Case B Approximation

    Get PDF
    We update our prior work on the case B collisional-recombination spectrum of He I to incorporate \textit{ab initio} photoionisation cross-sections. This large set of accurate, self-consistent cross-sections represents a significant improvement in He I emissivity calculations because it largely obviates the piecemeal nature that has marked all modern works. A second, more recent set of \textit{ab initio} cross-sections is also available, but we show that those are less consistent with bound-bound transition probabilities than our adopted set. We compare our new effective recombination coefficients with our prior work and our new emissivities with those by other researchers, and we conclude with brief remarks on the effects of the present work on the He I error budget. Our calculations cover temperatures 5000Te250005000 \le T_e \le 25000 K and densities 101ne101410^1 \le n_e \le 10^{14} cm3^{-3}. Full results are available online.Comment: Accepted to MNRAS Letters; 4 pages, 4 figures, 2 tables, 1 supplemental fil

    Design considerations for a LORAN-C timing receiver in a hostile signal to noise environment

    Get PDF
    The environment in which a LORAN-C Timing Receiver may function effectively depends to a large extent on the techniques utilized to insure that interfering signals within the pass band of the unit are neutralized. The baseline performance manually operated timing receivers is discussed and the basic design considerations and necessary parameters for an automatic unit utilizing today's technology are established. Actual performance data is presented comparing the results obtained from a present generation timing receiver against a new generation microprocessor controlled automatic acquisition receiver. The achievements possible in a wide range of signal to noise situations are demonstrated

    Lighting as a Circadian Rhythm-Entraining and Alertness-Enhancing Stimulus in the Submarine Environment

    Get PDF
    The human brain can only accommodate a circadian rhythm that closely follows 24 hours. Thus, for a work schedule to meet the brain’s hard-wired requirement, it must employ a 24 hour-based program. However, the 6 hours on, 12 hours off (6/12) submarine watchstanding schedule creates an 18-hour “day” that Submariners must follow. Clearly, the 6/12 schedule categorically fails to meet the brain’s operational design, and no schedule other than one tuned to the brain’s 24 hour rhythm can optimize performance. Providing Submariners with a 24 hour-based watchstanding schedule—combined with effective circadian entrainment techniques using carefully-timed exposure to light—would allow crewmembers to work at the peak of their daily performance cycle and acquire more restorative sleep. In the submarine environment, where access to natural light is absent, electric lighting can play an important role in actively entraining—and closely maintaining—circadian regulation. Another area that is likely to have particular importance in the submarine environment is the potential effect of light to help restore or maintain alertness

    Modulated Amplitude Waves in Collisionally Inhomogeneous Bose-Einstein Condensates

    Get PDF
    We investigate the dynamics of an effectively one-dimensional Bose-Einstein condensate (BEC) with scattering length aa subjected to a spatially periodic modulation, a=a(x)=a(x+L)a=a(x)=a(x+L). This "collisionally inhomogeneous" BEC is described by a Gross-Pitaevskii (GP) equation whose nonlinearity coefficient is a periodic function of xx. We transform this equation into a GP equation with constant coefficient aa and an additional effective potential and study a class of extended wave solutions of the transformed equation. For weak underlying inhomogeneity, the effective potential takes a form resembling a superlattice, and the amplitude dynamics of the solutions of the constant-coefficient GP equation obey a nonlinear generalization of the Ince equation. In the small-amplitude limit, we use averaging to construct analytical solutions for modulated amplitude waves (MAWs), whose stability we subsequently examine using both numerical simulations of the original GP equation and fixed-point computations with the MAWs as numerically exact solutions. We show that "on-site" solutions, whose maxima correspond to maxima of a(x)a(x), are significantly more stable than their "off-site" counterparts.Comment: 25 pages, 10 figures (many with several parts), to appear in Physica D; higher resolution versions of some figures are available at http://www.its.caltech.edu/~mason/paper

    Dynamics and Manipulation of Matter-Wave Solitons in Optical Superlattices

    Get PDF
    We analyze the existence and stability of bright, dark, and gap matter-wave solitons in optical superlattices. Then, using these properties, we show that (time-dependent) ``dynamical superlattices'' can be used to controllably place, guide, and manipulate these solitons. In particular, we use numerical experiments to displace solitons by turning on a secondary lattice structure, transfer solitons from one location to another by shifting one superlattice substructure relative to the other, and implement solitonic ``path-following'', in which a matter wave follows the time-dependent lattice substructure into oscillatory motion.Comment: 6 pages, revtex, 6 figures, to appear in Physics Letters A; minor modifications from last versio
    corecore