1,164 research outputs found
Ecological indicators for abandoned mines, Phase 1: Review of the literature
Mine waters have been identified as a significant issue in the majority of Environment Agency draft River Basin Management Plans. They are one of the largest drivers for chemical pollution in the draft Impact Assessment for the Water Framework Directive (WFD), with significant failures of environmental quality standards (EQS) for metals (particularly Cd, Pb, Zn, Cu, Fe) in many rivers linked to abandoned mines. Existing EQS may be overprotective of aquatic life which may have adapted over centuries of exposure. This study forms part of a larger project to investigate the ecological impact of metals in rivers, to develop water quality targets (alternative objectives for the WFD) for aquatic ecosystems impacted by long-term mining pollution. The report reviews literature on EQS failures, metal effects on aquatic biota and effects of water chemistry, and uses this information to consider further work.
A preliminary assessment of water quality and biology data for 87 sites across Gwynedd and Ceredigion (Wales) shows that existing Environment Agency water quality and biology data could be used to establish statistical relations between chemical variables and metrics of ecological quality. Visual representation and preliminary statistical analyses show that invertebrate diversity declines with increasing zinc concentration. However, the situation is more complex because the effects of other metals are not readily apparent. Furthermore, pH and aluminium also affect streamwater invertebrates, making it difficult to tease out toxicity due to individual mine-derived metals.
The most characteristic feature of the plant communities of metal-impacted systems is a reduction in diversity, compared to that found in comparable unimpacted streams. Some species thrive in the presence of heavy metals, presumably because they are able to develop metal tolerance, whilst others consistently disappear. Effects are, however, confounded by water chemistry, particularly pH. Tolerant species are spread across a number of divisions of photosynthetic organisms, though green algae, diatoms and blue-green algae are usually most abundant, often thriving in the absence of competition and/or grazing. Current UK monitoring techniques focus on community composition and, whilst these provide a sampling and analytical framework for studies of metal impacts, the metrics are not sensitive to these impacts. There is scope for developing new metrics, based on community-level analyses and for looking at morphological variations common in some taxa at elevated metal concentrations. On the whole, community-based metrics are recommended, as these are easier to relate to ecological status definitions.
With respect to invertebrates and fish, metals affect individuals, population and communities but sensitivity varies among species, life stages, sexes, trophic groups and with body condition. Acclimation or adaptation may cause varying sensitivity even within species. Ecosystem-scale effects, for example on ecological function, are poorly understood. Effects vary between metals such as cadmium, copper, lead, chromium, zinc and nickel in order of decreasing toxicity. Aluminium is important in acidified headwaters. Biological effects depend on speciation, toxicity, availability, mixtures, complexation and exposure conditions, for example discharge (flow). Current water quality monitoring is unlikely to detect short-term episodic increases in metal concentrations or evaluate the bioavailability of elevated metal concentrations in sediments. These factors create uncertainty in detecting ecological impairment in metal-impacted ecosystems. Moreover, most widely used biological indicators for UK freshwaters were developed for other pressures and none distinguishes metal impacts from other causes of impairment. Key ecological needs for better regulation and management of metals in rivers include: i) models relating metal data to ecological data that better represent influences on metal toxicity; ii) biodiagnostic indices to reflect metal effects; iii) better methods to identify metal acclimation or adaptation among sensitive taxa; iv) better investigative procedures to isolate metal effects from other pressures.
Laboratory data on the effects of water chemistry on cationic metal toxicity and bioaccumulation show that a number of chemical parameters, particularly pH, dissolved organic carbon (DOC) and major cations (Na, Mg, K, Ca) exert a major influence on the toxicity and/or bioaccumulation of cationic metals. The biotic ligand model (BLM) provides a conceptual framework for understanding these water chemistry effects as a combination of the influence of chemical speciation, and metal uptake by organisms in competition with H+ and other cations. In some cases where the BLM cannot describe effects, empirical bioavailable models have been successfully used. Laboratory data on the effects of metal mixtures across different water chemistries are sparse, with implications for transferring understanding to mining-impacted sites in the field where mixture effects are likely.
The available field data, although relatively sparse, indicate that water chemistry influences metal effects on aquatic ecosystems. This occurs through complexation reactions, notably involving dissolved organic matter and metals such as Al, Cu and Pb. Secondly, because bioaccumulation and toxicity are partly governed by complexation reactions, competition effects among metals, and between metals and H+, give rise to dependences upon water chemistry. There is evidence that combinations of metals are active in the field; the main study conducted so far demonstrated the combined effects of Al and Zn, and suggested, less certainly, that Cu and H+ can also contribute. Chemical speciation is essential to interpret and predict observed effects in the field. Speciation results need to be combined with a model that relates free ion concentrations to toxic effect. Understanding the toxic effects of heavy metals derived from abandoned mines requires the simultaneous consideration of the acidity-related components Al and H+.
There are a number of reasons why organisms in waters affected by abandoned mines may experience different levels of metal toxicity than in the laboratory. This could lead to discrepancies between actual field behaviour and that predicted by EQS derived from laboratory experiments, as would be applied within the WFD. The main factors to consider are adaptation/acclimation, water chemistry, and the effects of combinations of metals. Secondary effects are metals in food, metals supplied by sediments, and variability in stream flows. Two of the most prominent factors, namely adaptation/ acclimation and bioavailability, could justify changes in EQS or the adoption of an alternative measure of toxic effects in the field. Given that abandoned mines are widespread in England and Wales, and the high cost of their remediation to meet proposed WFD EQS criteria, further research into the question is clearly justified.
Although ecological communities of mine-affected streamwaters might be over-protected by proposed WFD EQS, there are some conditions under which metals emanating from abandoned mines definitely exert toxic effects on biota. The main issue is therefore the reliable identification of chemical conditions that are unacceptable and comparison of those conditions with those predicted by WFD EQS. If significant differences can convincingly be demonstrated, the argument could be made for alternative standards for waters affected by abandoned mines. Therefore in our view, the immediate research priority is to improve the quantification of metal effects under field circumstances. Demonstration of dose-response relationships, based on metal mixtures and their chemical speciation, and the use of better biological tools to detect and diagnose community-level impairment, would provide the necessary scientific information
Brexit: Modes of Uncertainty and Futures in an Impasse
Alongside the emergence of various populisms, Brexit and other contemporary geopolitical events have been presented as symptomatic of a generalizing and intensifying sense of uncertainty in the midst of a crisis of (neo)liberalism. In this paper we describe what kind of event Brexit is becoming in the impasse between the UK’s EU referendum in 2016 and its anticipated exit from the EU in 2019. Based on 108 interviews with people in the North‐East of England, we trace how Brexit is variously enacted and felt as an end, advent, a harbinger of worse to come, non‐event, disaster, and betrayed promise. By following how these incommensurate versions of Brexit take form and co‐exist we supplement explanatory and predictive approaches to the geographies of Brexit and exemplify an approach that traces what such geopolitical events become. Specifically, we use the concept of ‘modes of uncertainty’ as a way of discerning patterns in how present uncertainties are lived. A ‘mode of uncertainty’ is a shared set of practices animated by a distinctive mood through which futures are made present and felt. Rather than treat uncertainty as a static, explanatory context, we thus follow how different versions of Brexit are constituted through specific ‘modes of (un)certainty’ – negative hope, national optimisms, apprehensive hopefulness and fantasies of action ‐ that differentiate within a seemingly singular, shared sense of uncertainty
Localization of human breast-carcinoma xenografts using antibodies to carcinoembryonic antigen.
Affinity-purified antibodies to carcinoembryonic antigen (CEA) have been injected into immune-suppressed mice bearing xenografts of human breast tumours. It has been shown that the antibodies localized in the tumours but not in normal tissues. The degree of tumour localization correlates with the amount of tumour CEA, and is unaffected by levels of circulating CEA or CEA/anti-CEA immune complexes
Comparative functional histopathology of human breast carcinoma xenografts.
A series of xenografts of human breast carcinomas has been established and serially transplanted in immune-suppressed mice. Certain structural and functional features of the original human tumours, including carcinoembryonic antigen and epithelial membrane antigen, continue to be expressed by the resulting xenografts. Stromal responses such as elastosis and oestrogen-receptor activity were lost by the xenografts. No metastases were detected in tumour-bearing mice. This study suggests that xenografts may have some value in experimental pathology as one type of model of human breast carcinoma
EPOCHS VI: The Size and Shape Evolution of Galaxies since z ~ 8 with JWST Observations
We present the results of a size and structural analysis of 1395 galaxies at
with stellar masses
9.5 within the JWST Public CEERS field that overlaps with the HST CANDELS
EGS observations. We use GALFIT to fit single S\'ersic models to the rest-frame
optical profile of our galaxies, which is a mass-selected sample complete to
our redshift and mass limit. Our primary result is that at fixed rest-frame
wavelength and stellar mass, galaxies get progressively smaller, evolving as
up to . We discover that the vast
majority of massive galaxies at high redshifts have low S\'ersic indices, thus
do not contain steep, concentrated light profiles. Additionally, we explore the
evolution of the size-stellar mass relationship, finding a correlation such
that more massive systems are larger up to . This relationship breaks
down at , where we find that galaxies are of similar sizes, regardless
of their star formation rates and S\'ersic index, varying little with mass. We
show that galaxies are more compact at redder wavelengths, independent of sSFR
or stellar mass up to . We demonstrate the size evolution of galaxies
continues up to , showing that the process or causes for this
evolution is active at early times. We discuss these results in terms of ideas
behind galaxy formation and evolution at early epochs, such as their importance
in tracing processes driving size evolution, including minor mergers and AGN
activity.Comment: Submitted to MNRA
- …