272,682 research outputs found

    Gravitational Lensing and Anisotropies of CBR on the Small Angular Scales

    Get PDF
    We investigate the effect of gravitational lensing, produced by linear density perturbations, for anisotropies of the Cosmic Background Radiation (CBR) on scales of arcminutes. In calculations, a flat universe (Ω=1\Omega=1) and the Harrison-Zel'dovich spectrum (n=1n=1) are assumed. The numerical results show that on scales of a few arcminutes, gravitational lensing produces only negligible anisotropies in the temperature of the CBR. Our conclusion disagrees with that of Cay\'{o}n {\it et al.} who argue that the amplification of ΔT/T\Delta T/T on scales 3\le 3' may even be larger than 100\%.Comment: Accepted by MNRAS. 16 pages, 2 figures, tarred, compressed and uuencoded Postscript file

    A Supersymmetric Model with the Gauge Symmetry SU(3)_1 X SU(2)_1 X U(1)_1 X SU(3)_2 X SU(2)_2 X U(1)_2

    Full text link
    A supersymmetric model with two copies of the Standard Model gauge groups is constructed in the gauge mediated supersymmetry breaking scenario. The supersymmetry breaking messengers are in a simple form. The Standard Model is obtained after first step gauge symmetry breaking. In the case of one copy of the gauge interactions being strong, a scenario of electroweak symmetry breaking is discussed, and the gauginos are generally predicted to be heavier than the sfermions.Comment: 14 pages, revtex, 1 figure, messenger contents modified, discussion on GUTs improve

    AI for public health: Self-screening for eye diseases

    Get PDF
    A software-based visual-field testing (perimetry) system is described which incorporates several AI components, including machine learning, an intelligent user interface and pattern discovery. This system has been successfully used for self-screening in several different public environment

    Method and device for the detection of phenol and related compounds

    Get PDF
    A method is described which permits the selective oxidation and potentiometric detection of phenol and related compounds in an electrochemical cell. An anode coated with a gel immobilized oxidative enzyme and a cathode are each placed in an electrolyte solution. The potential of the cell is measured by a potentiometer connected to the electrodes

    Information filtering via biased heat conduction

    Full text link
    Heat conduction process has recently found its application in personalized recommendation [T. Zhou \emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present an improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users' mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.Comment: 4 pages, 3 figure

    A New Spin Gapless Semiconductors Family: Quaternary Heusler Compounds

    Full text link
    Using first-principles calculations, we investigate the band structures of a series of quaternary LiMgPdSn-type Heusler compounds. Our calculation results show that five compounds CoFeMnSi, CoFeCrAl, CoMnCrSi, CoFeVSi and FeMnCrSb possess unique electronic structures characterized by a half-metallic gap in one spin direction while a zero-width gap in the other spin direction showing spin gapless semiconducting behavior. We further analysis the electronic and magnetic properties of all quaternary Heusler alloys involved, and reveal a semi-empirical general rule (total valence electrons number being 26 or 28) for indentifying spin gapless semiconductors in Heusler compounds. The influences of lattice distortion and main-group element change have also been discussed.Comment: 20 pages, 5 figures, 1 supplementary file, submitted for publicatio

    An Ultra-Low-Power Oscillator with Temperature and Process Compensation for UHF RFID Transponder

    Get PDF
    This paper presents a 1.28MHz ultra-low-power oscillator with temperature and process compensation. It is very suitable for clock generation circuits used in ultra-high-frequency (UHF) radio-frequency identification (RFID) transponders. Detailed analysis of the oscillator design, including process and temperature compensation techniques are discussed. The circuit is designed using TSMC 0.18μm standard CMOS process and simulated with Spectre. Simulation results show that, without post-fabrication calibration or off-chip components, less than ±3% frequency variation is obtained from –40 to 85°C in three different process corners. Monte Carlo simulations have also been performed, and demonstrate a 3σ deviation of about 6%. The power for the proposed circuitry is only 1.18µW at 27°C
    corecore