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We investigate the e�ect of gravitational lensing, produced by linear density per-

turbations, for anisotropies of the Cosmic Background Radiation (CBR) on scales

of arcminutes. In calculations, a at universe (
 = 1) and the Harrison-Zel'dovich

spectrum (n = 1) are assumed. The numerical results show that on scales of a few

arcminutes, gravitational lensing produces only negligible anisotropies in the tem-

perature of the CBR. Our conclusion disagrees with that of Cay�on et al. who argue

that the ampli�cation of �T=T on scales � 30 may even be larger than 100%.
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I. INTRODUCTION

Many authors have computed the e�ect of gravitational lensing for anisotropies of the

CBR (Blanchard & Schneider 1987; Kashlinsky 1988; Cole & Efstathiou 1989; Tomita &

Watanabe 1989; Linder 1990; Watanabe & Tomita 1991; Feng & Liu. 1992; Cay�on et al.

1993). Unfortunately, however, their conclusions are controversial. Roughly speaking, there

exist three di�erent kinds of conclusion so far. The �rst is that gravitational lensing e�ects

strongly erase uctuations of the CBR on scales of a few arcminutes (Kashlinsky 1988); the

second is that an appreciable, even strong, ampli�cation of �T=T is possible (Sasaki 1989;

Linder 1990; Cay�on et al. 1993); the last is that gravitational lens e�ects on the CBR are

negligible (Cole & Efstathiou 1989; Tomita & Watanabe 1989).

Recently, Cay�on et al. presented calculations of the gravitational lensing e�ects, pro-

duced by linear density uctuations on the CBR and got an interesting result. Their work

implied that there should be an appreciable ampli�cation, of the order of 20%, for �T=T in

present experiments on the scales of several arcminutes, whereas previous work including the
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e�ect of nonlinear density uctuations found a negligible ampli�cation (Cole & Efstathiou

1989). This implies that the gravitational lensing e�ect on anisotropies of the CBR due

to linear density uctuations overwhelms that due to nonlinear clustering. This result is

surprising and di�cult to interpret.

In this paper, we use a new formalism to calculate the e�ect of gravitational lensing

on anisotropies of the CBR produced by linear density uctuations. Our calculations show

that the gravitational lensing e�ect on scales of a few arcminutes is essentially negligible in

contrast with the results of Cay�on et al.

Within the geometrical optics approximation, a gravitational �eld is equivalent to an

optical medium with a refractive index di�erent from unity, and the deection of light may

be interpreted in terms of the refractive index and its spatial variation. The amplitude and

phase uctuations, produced by a random gravitational �eld, may then be calculated using

the usual methods of random medium optics (Fang 1982).

In Sec.II, we establish the basic equations for a wave scattered by a gravitational potential

and for the amplitude of the scattered wave. In Sec.III, we present the explicit formulae

for calculating the anisotropies of the CBR. Numerical results and brief conclusions are

summarized in Sec.IV.

II. THE BASIC METHOD

Under some reasonable assumptions (Cole & Efstathiou 1989), one can prove that there

exists a gauge such that the metric perturbations are characterized by a single potential

�(t;x)� 1

ds2 = �(1 + 2�)dt2 + (1� 2�)a2(t)�ijdx
idxj ; (1)

where a(t) is the scale factor of the universe. The relationship between the gravitational

potential � and the matter density perturbation �� is with 8�G = c = 1

�� =
1

2
a2�b��: (2)
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In the background universe for the linear perturbation (which we assume to have 
0 = 1),

� is time-independent.

For the sake of simplicity in writing the Maxwell equations in a perturbed metric, we

use the conformal time � = 3
p
3t1=3 instead of t. Then

ds2 = �
1

3
(1 + 2�)� 4d� 2 +

1

3
(1 � 2�)� 4�ijdx

idxj : (3)

The speed of light in the metric of Eq.(3) is set to unity. A fundamental problem for treating

light propagating in an inhomogeneous universe is that of how to describe the gravitational

lensing e�ect. According to geometrical optics, a gravitational �eld is equivalent to a medium

with a refractive index di�erent from unity and the deection of light may be interpreted in

terms of the refractive index and its spatial variation. As a simple version of this analogue,

consider the spatial part of the photon four-momentum k� = dx�

d�
to be directed along the

x3 axis; one then has the following geodesic equation:

dki = �2 @�
@xi

dx3; i = 1; 2: (4)

On the other hand, the change in the direction of a light ray propagating in an inhomoge-

neous medium with refractive index n = 1 + n0 is

dki =
@n0

@xi
dx3; i = 1; 2: (5)

By comparing of Eqs.(4) and (5), it is obvious that the e�ect of the perturbed gravitational

�eld is equivalent to a change in the refractive index, i.e.

n0 = �2�: (6)

Therefore, considering the equivalence of the two descriptions of light propagating in an

inhomogeneous matter distribution and in a medium with inhomogeneous refractive index,

the Maxwell equations may be written in the following form

@E

@�
= (1 + 2�)5�H; (7)
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@H

@�
= �(1 + 2�)5�E: (8)

Formally, adopting Hanni's approach (Hanni 1977), the Maxwell equations in an universe

with an inhomogeneous matter distribution may be obtained in more rigorous way.

The propagation of an electromagnetic wave in a random inhomogeneous medium is

accompanied by a number of uctuation phenomena including polarization, uctuation of

phase and uctuation of amplitude. In the present paper, we concentrate on uctuation of

amplitude.

In a at universe, because the gravitational potential is time-independent, we can derive

a solution of the Maxwell equations (7) and (8) representing monochromatic waves with

�xed frequency !. In other words, we can assume that the electric and magnetic �elds have

the form Re(Ee�i!� ) and Re(He�i!� ) respectively. In the case of � = 2�!�1 � l0, (l0 is the

typical length-scale of inhomogeneity for matter in the universe), keeping only �rst order

terms, the wave equation can be simpli�ed as (Feng and Liu 1992)

(52 + !2)E = �4!2�E: (9)

To solve the equation of wave scattering, in the case of weak uctuations, we apply the

Born approximation to expand E in the series

E = E0 + E1 + E2 + � � � (10)

with E0 � E1 � E2 � � � �. Putting Eq.(10) into Eq.(9), we get two �rst-order equations:

(52 + !2)E0 = 0; (11)

(52 + !2)E1 = �4!2�E0: (12)

If the CBR is perfectly uniformly distributed, there is no net gravitational lensing e�ect

on anisotropies of the CBR. This is a well-known result in geometrical optics and will be

con�rmed below from the point of view of wave scattering. In order to study the gravitational
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lensing e�ect on anisotropies of the CBR, we focus on how the uctuation part of the CBR

is a�ected. To do so, we separate E0 into a homogeneous part E0h and a uctuation part

E0f

E0 = E0h + E0f (13)

with

E0h =< E0h >; E0f = E0� < E0f > : (14)

Here, the averaging is done over all observation directions. As E0h and E0f propagate

in an inhomogeneous universe, they interact with the gravitational potential and produce

scattered waves E1h and E1f respectively. E0h and E0f and their scattering terms satisfy

following equations

(52 + !2)E0h = 0; (15)

(52 + !2)E1h = �4!2�E0h; (16)

(52 + !2)E0f = 0; (17)

(52 + !2)E1f = �4!2�E0f : (18)

After scattering, the outgoing wave is

E = E0 + E1 = E0h + E0f + E1h + E1f : (19)

Because the last scattering surface is far away from us, without loss of generality, we let the

incident waves have the plane wave forms, E0h = A0he
i!�x and E0f = A0fe

i!�x. The scattered

waves can then be easily expressed, using Green's function method, in the following forms

E1h(x̂1) =
!2

�

Z
A0h(x̂)�(x)

ei(!x�!�x)

x
d3x; (20)
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E1f (x̂1) =
!2

�

Z
A0f(x̂)�(x)

ei(!x�!�x)

x
d3x: (21)

When Eqs.(20) and (21) are evaluated, it is su�cient to include only the contribution due

to waves scattered through angles not exceeding � = �
l0
� 1: In other words, the integration

can be con�ned to the part of space which lies within the cone C(d
), � � �
l0
, where � is

the angle between the direction of observation and the direction of the scattering element,

and l0 is the typical inhomogeneity scale in the universe. In fact, the integration functions

of Eqs.(20) and (21) oscillate rapidly outside the cone C(d
), so that for a su�ciently

smooth variation of �(x), integration over the region external to cone C(d
) only provides

a negligible contribution. This cone C(d
) is much smaller than the angular scale of CBR

inhomogeneities and so we have

E1h(x̂1) = A0h(x̂1)
!2

�

Z
�(x)

ei(!x�!�x)

x
d3x; (22)

E1f(x̂1) = A0f(x̂1)
!2

�

Z
�(x)

ei(!x�!�x)

x
d3x; (23)

A0h(x̂1) is the amplitude of the uniform part of the CBR and A0f(x̂1) is that of the uc-

tuation part; as a direct consequence, E1h(x̂1) is independent of observation direction, but

E1f(x̂1) does depend on the observation direction.

III. ANGULAR CORRELATION FUNCTION

In the Rayleigh-Jeans part of blockbody radiation spectrum, T / I (where T and I are

temperature and intensity of the CBR respectively) and I / A2 (where A is the amplitude

of the electric vector E). We will not distinguish A and E in the following except when

necessary. We then have

�T

T
= 2

�E

E
= 2

E � hEi
E

(24)

Putting Eq.(19) into Eq.(24) and using the de�nitions of E0h and E0f , we have
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�E

E
=

E0f + E1h � hE1hi+ E1f � hE1fi
E0h

: (25)

It is obvious from Eqs.(22) and (23) that E1h � hE1hi = 0 and hE1fi = 0. Without loss of

generality, we let E0h = 1 and then the above equation simpli�es to

�E

E
= E0f + E1f : (26)

Considering the above relations, the angular correlation function of anisotropy of tempera-

ture of the CBR may be obtained

C(�) =
D�T (x̂1)

T
�
�T (x̂2)

T

E
; (27)

where cos(�) = x̂1 �x̂2 and the averaging is done over all observation directions. Substituting

Eq.(26) into Eq.(27), it follows that

C(�) = hj 2E0f(x̂1) j2i+ 2hj 4E0f(x̂1)E1f (x̂1) ji + hj 2E1f (x̂1) j2i: (28)

In the right-hand side of Eq.(28), the �rst term is the angular correlation function of the

primordial uctuation background; the second describes the interaction between the gravita-

tional lensing e�ect and the perturbed part of the primordial background (this is called the

angular cross correlation function Cc(�), and determines the lensing e�ects on the anisotropy

of the primordial CBR); the last is a higher order term and may reasonably be omitted. The

major purpose of this paper is to determine the angular cross correlation function Cc(�).

We Fourier decompose the gravitational potential, obtaining

�(x) =
1

(3�)3

Z
�ke

ik�xd3k: (29)

Based on linear perturbation theory and assuming a Gaussian random uctuation �eld, we

have

�k =
3

2
H2

0k
�2�k; (30)

h�k1�k2i =j �k1 j2 �3(k1 � k2); (31)
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h�k1
�k2

i =
9

4
H4

0k
�4
1 j �k1 j2 �(k1 � k2); (32)

h�k1�k2
i =

3

2
H2

0k
�2
1 j �k1 j2 �(k1 � k2); (33)

where j �k j2 and j �k j2 are the spectra of perturbations of the density and gravitational

potential respectively.

Roughly speaking, for adiabatic perturbations, the temperature uctuation of the CBR

on scales of a few arcminutes is �T=T = (1=3)��=� before the recombination era (Silk

1967). What are the amplitude and shape of the temperature uctuations after decoupling?

Of course, this depends very much on the assumed recombination history. For the sake

of simplicity, we assume that the time-scale of recombination is extremely short so that

�T=T = (1=3)��=� remains with the previous amplitude and shape. This assumption is rea-

sonable for our purposes since we are dealing with wave propagation and its interaction with

gravitational lensing between the last scattering surface and the observer. Our assumption,

in fact, just means choosing a convenient initial condition.

Fourier decomposing the uctuation part of the CBR and its scattering term, we obtain

E0f(x̂1) =
1

6(2�)2

Z
�ke

ik�x1d3k; (34)

2E1f (x̂1) =
2!2

3(2�)7

Z Z Z
�k1�k2

eik1�x1eik2�x cos(!x� ! � x)d3xd3k1d3k2; (35)

where the vector x1 points to the last scattering surface and has length 2H�1
0 ; the unit

vector x̂1 represents the direction of observation.

For mathematical convenience, it is suitable to use a spherical harmonic analysis, which

is widely used when dealing with anisotropies on large angular scales:

2E0f (x̂1) =
1X
l=0

m=+lX
m=�l

AlmYlm(
); (36)

2E1f (x̂1) =
1X
l=0

m=+lX
m=�l

almYlm(
); (37)
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and

Alm =
Z
2E0f (x̂1)Y

?
lm(
)d
; (38)

alm =
Z
2E1f (x̂1)Y

?
lm(
)d
: (39)

Substituting Eqs.(34) and (35) into Eqs.(38) and (39) respectively and using the Rayleigh

equation

eik�x = eikx cos =
l=1X
l=0

il(2l + 1)jl(kx)Pl(cos ) (40)

and the addition expression

Pl(cos) =
4�

2l + 1

m=+lX
m=�l

Ylm(
k)Y
?
lm(
); (41)

where jl and Pl are the l-th spherical Bessel function and the l-th Legendre function respec-

tively, we obtain the following equations:

Alm =
il

6�2

Z
�kjl(2kH

�1
0 )Ylm(
k)d

3k; (42)

alm =
i2l!2

12�5

Z Z Z
�k1�k2

jl(2k1H
�1
0 )jl(k2x)Ylm(
k1

)Ylm(
k2
)

cos(!x� ! � x)
x

d3xd3k1d
3k2: (43)

According to random �eld theory, for a Gaussian random �eld, we have

h�k1�k2�k3�k4i = j �k1 j2j �k3 j2 �(k1 � k2)�(k3 � k4)+ j �k1 j2j �k4 j2 �(k1 � k3)�(k2 � k4)

+ j �k1 j2j �k2 j2 �(k1 � k4)�(k3 � k2): (44)

Combining the above expansions and integrating for angular coordinates within the cone

C(d
), we �nally obtain

<j a2lm j> = <j almA?
lm j>

=
4H4

0

3�l40
f[

2H�1
0Z

0

1Z

0

j �k j2 jl(2kH�1
0 )jl(kx)xdxdk]

2

+ 2

2H�1
0Z

0

2H�1
0Z

0

1Z

0

1Z

0

j �k1 j2j �k2 j2 j2l (2k1H�1
0 )jl(k2x1)jl(k2x2)x1x2dx1dx2dk1dk2g; (45)
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where the averaging is done over the entire sky and over all observation positions in the

universe. Finally, the angular cross correlation function, generated by interaction between

the gravitational lensing e�ect and the primordial perturbed part of the CBR, is as follows:

Cc(�) =
1

4�

1X
l=2

(2l + 1)2 <j alm j2> Pl(�): (46)

For a double beam switch experiment, the observable �T (�)=T , produced by gravitational

lensing, is

�T (�)=T =
1

4�

1X
l=2

(2l + 1)2 <j alm j2>12 (1� Pl(�)): (47)

IV. NUMERICAL RESULTS AND CONCLUSIONS

We assume that the uctuation spectrum is the Harrison-Zel'dovich spectrum when cal-

culating the gravitational lensing e�ect on anisotropies of the CBR. For comparison with

observation, an appropriate normalization is necessary. We use the rms mass uctuation

(�M=M)2 = 1 within a sphere of radius r0 = 8h�1Mpc as the normalization condition. Of

course, how to select normalization conditions depends somewhat on how the mass distri-

bution traces the galaxy distribution. At present, this is not clear and so the selection of

the normalization condition may produce an uncertainty in the numerical results. However,

this does not signi�cantly a�ect our conclusion. With the above normalization condition,

the normalized power spectrum is given by

j �k j2= r40k (48)

In order to cancel the unknown nonlinear e�ect, we need to apply a low-pass �lter function

to truncate the spectrum. For mathematical convenience, we choose this as an exponential

form e�krt. Thus, for making calculations, the power spectrum is replaced by

j �k j2= r40ke
�krt : (49)

Here rt is a cut-o� scale. Integrating Eq.(45) over k, we obtain
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ha2lmi =
2(H0r0)

4

3�
(
r0

l0
)4f[

H0

4

2H�1
0Z

0

Ql(
r2t + 4H�2

0 + x2

4H�1
0 x)

dx]2 +

H2
0

8
Ql(

1 + r2tH
2
0

8
)

2H�1
0Z

0

2H�1
0Z

0

Ql(
r2t + x21 + x22

2x1x2)
dx1dx2g (50)

with

l0 =

R
1

k
j �k j2d3kR
j �k j2d3k

= 3rt; (51)

where Ql is the second kind of Legendre function. We have integrated Eq.(50) numerically

in the case of rt = 5h�1Mpc, r0 = 8h�1Mpc and h = 0:75. The behavior of the multipoles as

a function of the harmonic number l is showed in Fig.1. The predicted cross function of the

temperature uctuation of the CBR due to the gravitational lensing e�ect for comparison

with double beam switch experiments is showed in Fig.2. We have also made numerical

calculations varying the parameters rt, r0 and h within acceptable regions. However, the

numerical results are not sensitive to changes of these parameters. From Fig.2, it is obvious

that the e�ect of gravitatioal lensing on anisotropies of temperature of the CBR on the scale

of arcminutes are too small to signi�cantly amplify or depress the primordial anisotropies of

the CBR. We can then safely conclude that the gravitational lensing e�ect on anisotropies

of temperature of the CBR on scales of a few arcminutes are negligible. Our conclusion

disagrees strongly with that of Cayon et al. who argue that gravitational lensing, produced

by linear density perturbations, may enhances �T=T by � 20% or even more.

In addition, the problem in the calculation presented by Cay�on et al. (1993) could be

that they considered the e�ect on the anisotropies of the CBR caused only by deections

of light lines, but not by convergences and divergences of light beams. In principle, the last

e�ect could also produce a considerable change in the uctuation of the intensity of the CBR

compared with that caused by deections of light lines.
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