1,825 research outputs found

    Rare earth contributions to the X-ray magnetic circular dichroism at the Co K edge in rare earth-cobalt compounds investigated by multiple-scattering calculations

    Full text link
    The X-ray magnetic circular dichroism (XMCD) has been measured at the Co K edge in Co-hcp and R-Co compounds (R=La, Tb, Dy). The structure of the experimental XMCD spectra in the near-edge region has been observed to be highly sensitive to the magnetic environment of the absorbing site. Calculations of the XMCD have been carried out at the Co K edge in Co metal, LaCo5_5 and TbCo5_5 within the multiple-scattering framework including the spin-orbit coupling. In the three systems, the XMCD spectra in the near-edge region are well reproduced. The possibility to separate and quantitatively estimate the local effects from those due to the neighboring atoms in the XMCD cross section makes possible a more physical understanding of the spectra. The present results emphasize the major role played by the dd states of the Tb ions in the XMCD spectrum at the Co K edge in the TbCo5_5 compound.Comment: 34 pages, revtex, 10 eps figures included with epsf, after referee revie

    Intercomparison of stratospheric chemistry models under polar vortex conditions

    Get PDF
    Several stratospheric chemistry modules from box, 2-D or 3-D models, have been intercompared. The intercomparison was focused on the ozone loss and associated reactive species under the conditions found in the cold, wintertime Arctic and Antarctic vortices. Comparisons of both gas phase and heterogeneous chemistry modules show excellent agreement between the models under constrained conditions for photolysis and the microphysics of polar stratospheric clouds. While the mean integral ozone loss ranges from 4-80% for different 30-50 days long air parcel trajectories, the mean scatter of model results around these values is only about +/-1.5%. In a case study, where the models employed their standard photolysis and microphysical schemes, the variation around the mean percentage ozone loss increases to about +/-7%. This increased scatter of model results is mainly due to the different treatment of the PSC microphysics and heterogeneous chemistry in the models, whereby the most unrealistic assumptions about PSC processes consequently lead to the least representative ozone chemistry. Furthermore, for this case study the model results for the ozone mixing ratios at different altitudes were compared with a measured ozone profile to investigate the extent to which models reproduce the stratospheric ozone losses. It was found that mainly in the height range of strong ozone depletion all models underestimate the ozone loss by about a factor of two. This finding corroborates earlier studies and implies a general deficiency in our understanding of the stratospheric ozone loss chemistry rather than a specific problem related to a particular model simulation

    Intermixing at the heterointerface between ZnS Zn S,O bilayer buffer and CuInS2 thin film solar cell absorber

    Get PDF
    The application of Zn compounds as buffer layers was recently extended to wide gap CuInS2 CIS based thin film solar cells. Using a new chemical deposition route for the buffer preparation aiming at the deposition of a single layer, nominal ZnS buffer without the need for any toxic reactants such as, e.g. hydrazine has helped to achieve a similar efficiency as respective CdS buffered reference devices. After identifying the deposited Zn compound, as ZnS Zn S,O bi layer buffer in former investigations [M. Bär, A. Ennaoui, J. Klaer, T. Kropp, R. S ez Araoz, N. Allsop, I. Lauermann, H. W. Schock, and M.C. Lux Steiner, Formation of a ZnS Zn S,O bilayer buffer on CuInS2 thin film solar cell absorbers by chemical bath deposition , J. Appl. Phys., accepted.], this time the focus lies on potential diffusion intermixing processes at the buffer absorber interface possibly, clarifying the effect of the heat treatment, which drastically enhances the device performance of respective final solar cells. The interface formation was investigated by x ray photoelectron and x ray excited Auger electron spectroscopy. In addition, photoelectron spectroscopy PES measurements were also conducted using tuneable monochromatized synchrotron radiation in order to gain depth resolved information. The buffer side of the buffer absorber heterointerface were investigated by means of the characterization of Zn S,O ZnS CIS structures where the ZnS Zn S,O bi layer buffer was deposited successively by different deposition times. In order to make the in terms of PES information depth deeply buried absorber side of the buffer absorber heterointerface accessible for characterization, in these cases the buffer layer was etched away by dilute HClaq. We found that while out leached Cu from the absorber layer forms together with the educts in the chemical bath a Zn 1 Z ,Cu2Z S like interlayer between buffer and absorber, Zn is incorporated in the uppermost region of the absorber. Both effects are strongly enhanced by postannealing the Zn S,O ZnS CIS samples. However, it was determined that the major fraction of the Cu and Zn can be found quite close to the heterointerface in the buffer and absorber layer, respectively. Due to this limited in the range of one monolayer spatial extent, these diffusion mechanisms were rather interpreted as a CBD induced and heat treatment promoted Cu Zn ion exchange at the buffer absorber interface. Possible impacts of this intermixing on the performance of the final solar cell devices will also be discusse

    Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering: Determined by the OLYMPUS Experiment

    Get PDF
    The OLYMPUS collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2γR_{2\gamma}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01~GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of 20°\approx 20\degree to 80°80\degree. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved GEM and MWPC detectors at 12°12\degree, as well as symmetric M{\o}ller/Bhabha calorimeters at 1.29°1.29\degree. A total integrated luminosity of 4.5~fb1^{-1} was collected. In the extraction of R2γR_{2\gamma}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2γR_{2\gamma}, presented here for a wide range of virtual photon polarization 0.456<ϵ<0.9780.456<\epsilon<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.Comment: 5 pages, 3 figures, 2 table

    Production of Lambda and Sigma^0 hyperons in proton-proton collisions

    Get PDF
    This paper reports results on simultaneous measurements of the reaction channels pp -> pK+\Lambda and pp -> pK+\Sigma^0 at excess energies of 204, 239, and 284 MeV (\Lambda) and 127, 162, and 207 MeV (\Sigma^0). Total and differential cross sections are given for both reactions. It is concluded from the measured total cross sections that the high energy limit of the cross section ratio is almost reached at an excess energy of only about 200 MeV. From the differential distributions observed in the overall CMS as well as in the Jackson and helicity frames, a significant contribution of interfering nucleon resonances to the \Lambda production mechanism is concluded while resonant \Sigma^0-production seems to be of lesser importance and takes place only through specific partial waves of the entrance channel. The data also indicate that kaon exchange plays a minor role in the case of \Lambda- but an important role for \Sigma^0-production. Thus the peculiar energy dependence of the \Lambda-to-\Sigma^0 cross section ratio appears in a new light as its explanation requires more than mere differences between the p\Lambda and the p\Sigma^0 final state interaction. The data provide a benchmark for theoretical models already available or yet to come.Comment: 18 pages, 10 figures; accepted by The European Physical Journal A (EPJ A

    Measurement of the Longitudinal Spin Transfer to Lambda and Anti-Lambda Hyperons in Polarised Muon DIS

    Get PDF
    The longitudinal polarisation transfer from muons to lambda and anti-lambda hyperons, D_LL, has been studied in deep inelastic scattering off an unpolarised isoscalar target at the COMPASS experiment at CERN. The spin transfers to lambda and anti-lambda produced in the current fragmentation region exhibit different behaviours as a function of x and xF . The measured x and xF dependences of D^lambda_LL are compatible with zero, while D^anti-lambda_LL tends to increase with xF, reaching values of 0.4 - 0.5. The resulting average values are D^lambda_LL = -0.012 +- 0.047 +- 0.024 and D^anti-lambda_LL = 0.249 +- 0.056 +- 0.049. These results are discussed in the frame of recent model calculations.Comment: 13 pages, 7 figure

    Hadron Production in Diffractive Deep-Inelastic Scattering

    Get PDF
    Characteristics of hadron production in diffractive deep-inelastic positron-proton scattering are studied using data collected in 1994 by the H1 experiment at HERA. The following distributions are measured in the centre-of-mass frame of the photon dissociation system: the hadronic energy flow, the Feynman-x (x_F) variable for charged particles, the squared transverse momentum of charged particles (p_T^{*2}), and the mean p_T^{*2} as a function of x_F. These distributions are compared with results in the gamma^* p centre-of-mass frame from inclusive deep-inelastic scattering in the fixed-target experiment EMC, and also with the predictions of several Monte Carlo calculations. The data are consistent with a picture in which the partonic structure of the diffractive exchange is dominated at low Q^2 by hard gluons.Comment: 16 pages, 6 figures, submitted to Phys. Lett.

    Human resources for health and burden of disease: an econometric approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of health workers on health has been proven to be important for various health outcomes (e.g. mortality, coverage of immunisation or skilled birth attendants). The study aim of this paper is to assess the relationship between health workers and disability-adjusted life years (DALYs), which represents a much broader concept of health outcome, including not only mortality but also morbidity.</p> <p>Methods</p> <p>Cross-country multiple regression analyses were undertaken, with DALYs and DALYs disaggregated according to the three different groups of diseases as the dependent variable. Aggregate health workers and disaggregate physicians, nurses, and midwives were included as independent variables, as well as a variable accounting for the skill mix of professionals. The analysis also considers controlling for the effects of income, income distribution, percentage of rural population with access to improved water source, and health expenditure.</p> <p>Results</p> <p>This study presents evidence of a statistically negative relationship between the density of health workers (especially physicians) and the DALYs. An increase of one unit in the density of health workers per 1000 will decrease, on average, the total burden of disease between 1% and 3%. However, in line with previous findings in the literature, the density of nurses and midwives could not be said to be statistically associated to DALYs.</p> <p>Conclusions</p> <p>If countries increase their health worker density, they will be able to reduce significantly their burden of disease, especially the burden associated to communicable diseases. This study represents supporting evidence of the importance of health workers for health.</p

    Systematic study of the pp -> pp omega reaction

    Full text link
    A systematic study of the production of omega-mesons in proton-proton-collisions was carried out in a kinematically complete experiment at three excess energies(epsilon= 92, 128, 173MeV). Both protons were detected using the large-acceptance COSY-TOF spectrometer at an external beam line at the Cooler Synchrotron COSY at Forschungszentrum J\"ulich. The total cross section, angular distributions of both omega-mesons and protons were measured and presented in various reference frames such as the overall CMS, helicity and Jackson frame. In addition, the orientation of the omega-spin and invariant mass spectra were determined. We observe omega-production to take place dominantly in Ss and Sp final states at epsilon = 92, 128 MeV and, additionally, in Sd at epsilon= 173 MeV. No obvious indication of resonant omega-production via N^*-resonances was found, as proton angular distributions are almost isotropic and invariant mass spectra are compatible with phase space distributions. A dominant role of ^3P_1 and ^1S_0 initial partial waves for omega-production was concluded from the orientation of the decay plane of the omega-meson. Although the Jackson angle distributions in the omega-p-Jackson frame are anisotropic we argue that this is not an indication of a resonance but rather a kinematical effect reflecting the anisotropy of the omega angular distribution. The helicity angle distribution in the omega-p-helicity frame shows an anisotropy which probably reflects effects of the omega angular momenta in the final state; this observable may be, in addition to the orientation of the omega decay plane, the most sensitive one to judge the validity of theoretical descriptions of the production process.Comment: 17 pages, 16 figures, accepted for publication in EPJ
    corecore