35,483 research outputs found

    Generations of orthogonal surface coordinates

    Get PDF
    Two generation methods were developed for three dimensional flows where the computational domain normal to the surface is small. With this restriction the coordinate system requires orthogonality only at the body surface. The first method uses the orthogonal condition in finite-difference form to determine the surface coordinates with the metric coefficients and curvature of the coordinate lines calculated numerically. The second method obtains analytical expressions for the metric coefficients and for the curvature of the coordinate lines

    Non-Gaussian distribution of collective operators in quantum spin chains

    Get PDF
    We numerically analyse the behavior of the full distribution of collective observables in quantum spin chains. While most of previous studies of quantum critical phenomena are limited to the first moments, here we demonstrate how quantum fluctuations at criticality lead to highly non-Gaussian distributions thus violating the central limit theorem. Interestingly, we show that the distributions for different system sizes collapse after scaling on the same curve for a wide range of transitions: first and second order quantum transitions and transitions of the Berezinskii-Kosterlitz-Thouless type. We propose and carefully analyse the feasibility of an experimental reconstruction of the distribution using light-matter interfaces for atoms in optical lattices or in optical resonators.Comment: 15 pages, 5 figures; last version close to published versio

    Deceleration of the solar wind in the Earth foreshock region: ISEE 2 and IMP 8 observations

    Get PDF
    The deceleration of the solar wind in the region of the interplanetary space filled by ions backstreaming from the Earth bow shock was studied using a two spacecraft technique. This deceleration, which is correlated with the "diffuse" but not with the "reflected" ion population, depends on the solar wind bulk velocity: at low velocities (below 300 km/sec) the velocity decrease is about 5 km/sec, while at higher velocities (above 400 km/sec) the decrease may be as large as 30 km/sec. Along with this deceleration, the solar wind undergoes a deflection of about 1 deg away from the direction of the Earth bow shock. The energy balance shows that the kinetic energy loss far exceeds the thermal energy which is possibly gained by the solar wind, therefore, at least part of this energy must go into waves and/or into the backstreaming ions

    Short-Range Ordered Phase of the Double-Exchange Model in Infinite Dimensions

    Get PDF
    Using dynamical mean-field theory, we have evaluated the magnetic instabilities and T=0 phase diagram of the double-exchange model on a Bethe lattice in infinite dimensions. In addition to ferromagnetic (FM) and antiferromagnetic (AF) phases, we also study a class of disordered phases with magnetic short-range order (SRO). In the weak-coupling limit, a SRO phase has a higher transition temperature than the AF phase for all fillings p below 1 and can even have a higher transition temperature than the FM phase. At T=0 and for small Hund's coupling J_H, a SRO state has lower energy than either the FM or AF phases for 0.26\le p 0 limit but appears for any non-zero value of J_H.Comment: 11 pages, 3 figures, published versio
    corecore