70 research outputs found

    Expression of Chemoresistance-Related Genes and Heat Shock Protein 72 in Hyperthermic Isolated Limb Perfusion of Malignant Melanoma: An Experimental Study

    Get PDF
    Hyperthermic isolated limb perfusion (HILP) is considered an established treatment for multiple locoregional intransit metastases in malignant melanoma of the extremities. Various mechanisms such as the expression of chemoresistance genes and heat shock proteins by the tumor may be responsible for varying response rates and locoregional recurrences of the treatment. The aim of the experimental animal study was to investigate the direct impact of HILP on such mechanisms of resistance. Tissue temperature, administration of the cytostatic drug, and duration of perfusion were varied. Expression of the chemoresistance genes mdr1, mrp1, mrp2, and lrp and of heat shock protein 72 (HSP72) in the tumor tissue was analysed using RT-PCR and western blot analysis. The untreated SK-MEL-3 tumor expressed mdr1, mrp1, and lrp, but not mrp2. Neither variation of temperature, administration of the cytostatic drug, nor duration of perfusion changed the expression of this “resistance pattern”. In contrast to the cytostatic drug, hyperthermia causes a persistent induction of HSP72. Both observations could offer a potential explanation for failure of HILP in malignant melanoma

    Analysing the relationship between the fields of thermo- and electrocatalysis taking hydrogen peroxide as a case study

    Get PDF
    Catalysis is inherently driven by the interaction of reactants, intermediates and formed products with the catalyst’s surface. In order to reach the desired transition state and to overcome the kinetic barrier, elevated temperatures or electrical potentials are employed to increase the rate of reaction. Despite immense efforts in the last decades, research in thermo- and electrocatalysis has often preceded in isolation, even for similar reactions. Conceptually, any heterogeneous surface process that involves changes in oxidation states, redox processes, adsorption of charged species (even as spectators) or heterolytic cleavage of small molecules should be thought of as having parallels with electrochemical processes occurring at electrified interfaces. Herein, we compare current trends in thermo- and electrocatalysis and elaborate on the commonalities and differences between both research fields, with a specific focus on the production of hydrogen peroxide as case study. We hope that interlinking both fields will be inspiring and thought-provoking, eventually creating synergies and leverage towards more efficient decentralized chemical conversion processes

    Stable and Active Oxygen Reduction Catalysts with Reduced Noble Metal Loadings through Potential Triggered Support Passivation

    Get PDF
    The development of stable, cost‐efficient and active materials is one of the main challenges in catalysis. The utilization of platinum in the electroreduction of oxygen is a salient example where the development of new material combinations has led to a drastic increase in specific activity compared to bare platinum. These material classes comprise nanostructured thin films, platinum alloys, shape‐controlled nanostructures and core–shell architectures. Excessive platinum substitution, however, leads to structural and catalytic instabilities. Herein, we introduce a catalyst concept that comprises the use of an atomically thin platinum film deposited on a potential‐triggered passivating support. The model catalyst exhibits an equal specific activity with higher atom utilization compared to bulk platinum. By using potential‐triggered passivation of titanium carbide, irregularities in the Pt film heal out via the formation of insoluble oxide species at the solid/liquid interface. The adaptation of the described catalyst design to the nanoscale and to high‐surface‐area structures highlight the potential for stable, passivating catalyst systems for various electrocatalytic reactions such as the oxygen reduction reaction

    Totale Beckenexenteration beim kolorektalen Karzinom: Morbidität und Prognose

    No full text

    Sphinktererhalt beim tiefsitzenden Rektumkarzinom - Stellenwert multimodaler Therapiekonzepte

    No full text

    Extremitätenperfusion beim malignen Melanom

    No full text
    corecore