38 research outputs found

    Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in \u3cem\u3ePseudomonas aeruginosa\u3c/em\u3e

    Get PDF
    Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival

    Natural equilibrium states for multimodal maps

    Full text link
    This paper is devoted to the study of the thermodynamic formalism for a class of real multimodal maps. This class contains, but it is larger than, Collet-Eckmann. For a map in this class, we prove existence and uniqueness of equilibrium states for the geometric potentials −tlog⁡∣Df∣-t \log|Df|, for the largest possible interval of parameters tt. We also study the regularity and convexity properties of the pressure function, completely characterising the first order phase transitions. Results concerning the existence of absolutely continuous invariant measures with respect to the Lebesgue measure are also obtained

    Combining Provocative Agents of Calcitonin to Detect Medullary Carcinoma of the Thyroid

    No full text
    The presence of clinically undetectable medullary thyroid cancer can be revealed by characterisdc patterns of calcitonin in serum after the injection of a provocative agent, pentagastrin or calcium ion. However, in some reports, medullary thyroid cancer was uncovered in a test with pentagastrin but not in one with calcium ion, and vice versa. To reduce the number of erroneous responses, each provocative agent has been employed in separate tests. Combining pentagastrin and calcium into one stimulus should give the advantage of each agent while requiring less time and fewer analyses in a single test. We combined pentagastrin injection and calcium ion infusion into a single stimulus of calcitonin secretion. Normal responses to each pharmacologic agent and to the combination were established. In patients with medullary carcinoma, the combined stimuli usually, but not always, elicited a greater rise in serum calcitonin concentration than did the more potent of the two agents alone. However, we encountered no false negative results in any of the methods used: pentagastrin alone, calcium ion alone, or pentagastrin combined with calcium. Still, normal responses to both agents theoredcally give greater assurance that medullary cancer and hereditary disease are absent. The symptoms associated with the provocative tests were the same as, or no worse than, those reported for each agent alone. Serum calcium concentrations increased for a few minutes after calcium gluconate was administered, but, with practice at infusions, maximum concentrations were held below 14.2 mg/dl

    Large-scale homogeneous molecular templates for femtosecond time-resolved studies of the guest-host interaction

    Get PDF
    Siffalovic P, Michelswirth M, Bartz P, et al. Large-scale homogeneous molecular templates for femtosecond time-resolved studies of the guest-host interaction. Journal of Biotechnology. 2004;112(1-2):139-149.Self-assembled monolayer films based on iodobenzoyloxy-functionalized resorc[4]arenes were prepared on gold substrates to serve as model systems for future time-resolved studies of molecular recognition, a mechanism of outstanding importance in bioorganic systems. The film properties were tested using X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and imaging ellipsometry. An apparatus for time-resolved electron spectroscopy utilizing femtosecond soft X-ray pulses is capable of detecting iodine core-level photolines and the photoinduced dissociation after ultraviolet illumination. The developed technique holds promise for tracking the temporal evolution of chemical shifts of atomic markers as local probes for the dynamics of the guest-host interaction

    Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic Resistance in Pseudomonas aeruginosa

    Get PDF
    Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs during translation. In Escherichia coli and Salmonella enterica, the posttranslational β-lysylation of Lys34 by the PoxA protein is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which β-Lys is attached to E. coli EF-P. Analysis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyltransferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa ΔearP, or from a ΔrmlC::acc1 strain deficient in dTDP-l-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-l-rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control was investigated in P. aeruginosa using a Pro(4)-green fluorescent protein (Pro(4)GFP) in vivo reporter assay, and the fluorescence was significantly reduced in Δefp, ΔearP, and ΔrmlC::acc1 strains. ΔrmlC::acc1, ΔearP, and Δefp strains also displayed significant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin. Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene expression and survival
    corecore