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Cyclic Rhamnosylated Elongation Factor P Establishes Antibiotic
Resistance in Pseudomonas aeruginosa

Andrei Rajkovic,a Sarah Erickson,b Anne Witzky,c Owen E. Branson,d Jin Seo,e Philip R. Gafken,f Michael A. Frietas,g,h

Julian P. Whitelegge,i Kym F. Faull,i William Navarre,j Andrew J. Darwin,e Michael Ibbak

Molecular, Cellular and Developmental Biology Programa, Department of Chemistryb, Department of Molecular Geneticsc, Ohio State Biochemistry Programd, The Ohio
State University, Columbus, Ohio, USA; Department of Microbiology, New York University School of Medicine, New York, New York, USAe; Fred Hutchinson Cancer
Research Center, Proteomics Facility, Seattle, Washington, USAf; Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USAg; Department of
Molecular Virology, Immunology and Medical Genetics, The Ohio State University, Columbus, Ohio, USAh; Department of Psychiatry and Biobehavioral Sciences, Pasarow
Mass Spectrometry Laboratory, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, Los
Angeles, California, USAi; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canadaj; Department of Microbiology and Center for RNA Biology,
The Ohio State University, Columbus, Ohio, USAk

ABSTRACT Elongation factor P (EF-P) is a ubiquitous bacterial protein that is required for the synthesis of poly-proline motifs
during translation. In Escherichia coli and Salmonella enterica, the posttranslational �-lysylation of Lys34 by the PoxA protein
is critical for EF-P activity. PoxA is absent from many bacterial species such as Pseudomonas aeruginosa, prompting a search for
alternative EF-P posttranslation modification pathways. Structural analyses of P. aeruginosa EF-P revealed the attachment of a
single cyclic rhamnose moiety to an Arg residue at a position equivalent to that at which �-Lys is attached to E. coli EF-P. Analy-
sis of the genomes of organisms that both lack poxA and encode an Arg32-containing EF-P revealed a highly conserved glycosyl-
transferase (EarP) encoded at a position adjacent to efp. EF-P proteins isolated from P. aeruginosa �earP, or from a �rmlC::acc1
strain deficient in dTDP-L-rhamnose biosynthesis, were unmodified. In vitro assays confirmed the ability of EarP to use dTDP-L-
rhamnose as a substrate for the posttranslational glycosylation of EF-P. The role of rhamnosylated EF-P in translational control
was investigated in P. aeruginosa using a Pro4-green fluorescent protein (Pro4GFP) in vivo reporter assay, and the fluorescence
was significantly reduced in �efp, �earP, and �rmlC::acc1 strains. �rmlC::acc1, �earP, and �efp strains also displayed signifi-
cant increases in their sensitivities to a range of antibiotics, including ertapenem, polymyxin B, cefotaxim, and piperacillin.
Taken together, our findings indicate that posttranslational rhamnosylation of EF-P plays a key role in P. aeruginosa gene ex-
pression and survival.

IMPORTANCE Infections with pathogenic Salmonella, E. coli, and Pseudomonas isolates can all lead to infectious disease with
potentially fatal sequelae. EF-P proteins contribute to the pathogenicity of the causative agents of these and other diseases by
controlling the translation of proteins critical for modulating antibiotic resistance, motility, and other traits that play key roles
in establishing virulence. In Salmonella spp. and E. coli, the attachment of �-Lys is required for EF-P activity, but the proteins
required for this posttranslational modification pathway are absent from many organisms. Instead, bacteria such as P. aerugi-
nosa activate EF-P by posttranslational modification with rhamnose, revealing a new role for protein glycosylation that may also
prove useful as a target for the development of novel antibiotics.
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Bacterial protein synthesis requires the activity of several essen-
tial conserved factors for initiation, elongation, termination,

and recycling steps of the translation cycle. In addition to these
general factors, numerous other factors control translation by in-
teracting with the ribosome under specific conditions (1). For
example, under conditions of amino acid limitation, RelA binding
to ribosomes controls the stringent response, while EttA regulates
protein synthesis in response to changes in the cellular ATP/ADP
ratio (2–6). Other conserved translation factors have also been
identified that are not essential for growth under standard labora-

tory conditions but are nevertheless required for efficient protein
synthesis (7, 8). One notable example is the specialized translation
factor elongation factor P (EF-P) that effects the translation of a
particular subset of mRNAs (9, 10). In Escherichia coli and Salmo-
nella enterica, EF-P contributes to fitness throughout vegetative
growth and is required for various phenotypes, including antibi-
otic resistance, motility, and osmotic adaptation. EF-P activity in
E. coli and S. enterica is dependent on the PoxA-catalyzed post-
translational modification of a conserved Lys residue with the
amino acid (R)-�-Lys, the absence of which attenuates virulence.
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The role of posttranslational modifications in determining the
activities of translation factors is less extensively described in bac-
teria than in eukaryotes. Phosphorylation has been shown to neg-
atively regulate the activities of elongation factor Tu (EF-Tu) in
Mycobacterium tuberculosis (11) and Bacillus subtilis (12) and of
glutamyl-tRNA synthetase in E. coli (13, 14), thereby limiting pro-
tein synthesis during specific phases of bacterial growth and
differentiation. In E. coli and S. enterica EF-P, the (R)-�-Lys mod-
ification helps prevent poly-proline-induced translational stalling
by increasing EF-P’s binding affinity for stalled ribosomes,
thereby maintaining protein homeostasis and ensuring the proper
stoichiometry of different components of the proteome (7, 15–
18). Eukaryotes have a conserved homolog of EF-P, known as
eukaryotic initiation factor 5A (eIF5A), that also functions to al-
leviate poly-proline pausing but is posttranslationally modified
with hypusine (19, 20). While EF-P is universally conserved in
bacteria, the pathway for its posttranslational modification is not,
prompting a search for alternative modification pathways.

Posttranslational glycosylation of EF-P with rhamnose from
Shewanella oneidensis was recently reported and was shown to
prevent translational stalling of a heterologously expressed cadC
reporter gene (21). Glycosylations are primarily studied in eu-
karyotes, where they are thought to prevent protease degradation,
promote protein folding, and provide recognition elements for
cell-cell interactions (22). Bacterial glycoproteins however, are
poorly understood, due to their comparatively recent emergence
in the field of glycobiology (23). Modeling studies proposed that
the structure of the rhamnose glycan on EF-P exists in a puckered-
ring confirmation distinct from the linear geometry of (R)-�-Lys
and hypusine (21). Despite the different chemical and structural
properties of (R)-�-Lys and rhamnose, both are critical to EF-P’s
function as well as for establishing virulence, making it of consid-
erable importance to determine how functional convergence is
achieved.

In this study, with Pseudomonas aeruginosa, we demonstrated
that the recently discovered glycosyltransferase EarP attaches a
cyclic rhamnose moiety onto EF-P at the � amine position of its
highly conserved R34 residue. In addition, we unambiguously es-
tablished that the primary source of the sugar-nucleotide sub-
strate is derived from the biosynthetic pathway encoded by the
rmlABCD operon. Absence of the glycosylation leads to a signifi-
cant decrease in translation of poly-proline proteins, as shown
with a Pro4-green fluorescent protein (Pro4-GFP) in vivo reporter
assay. A deficiency in poly-proline expression also leads to pleio-
tropic phenotypes and susceptibility to a host of antibiotics. Cy-
clic rhamnosylation of arginine represents a new mode of
N-glycosylation in bacteria that directly contributes to antibiotic
resistance for opportunistic pathogens.

RESULTS
Structure of the posttranslational modification of P. aeruginosa
EF-P. To investigate in detail the structure of a bacterial EF-P not
predicted to be modified with �-Lys, His6 –EF-P was purified
from P. aeruginosa and analyzed by mass spectrometry (MS). A
high-mass spectrum was obtained for the intact His6 –EF-P pro-
tein, with a Fourier transform ion cyclotron resonance (FT-ICR)
mass spectrometer that measured an envelope of multiply charged
ions corresponding to a monoisotopic mass of 21,913.30 Da
(Fig. 1A). The calculated monoisotopic mass, based on the
genomic sequence, including the hexahistadine epitope, is only

21,793.96 Da, identifying a mass difference of 146.12 Da unac-
counted for in the native protein. To determine if the additional
mass of 146.12 Da localized to a specific residue, His6 –EF-P was
digested into peptides using a Lys-C protease cocktail and ana-
lyzed on an Orbitrap Elite mass spectrometer. Lys-C digestion of
His6 –EF-P produced peptides with a C-terminal lysine. Fragmen-
tation of the peptide SGRNAAVVK, by electron transfer dissoci-
ation (ETD) and higher-energy collision-induced dissociation
(HCD) fragmentation, indicated that the additional mass resided
on Arg32, a highly conserved residue analogous to Lys34 of E. coli
EF-P, the site of �-Lys attachment (Fig. 1B; see also Fig. S1 in the
supplemental material).

Though the FT-ICR instrument measured the mass of His6 –
EF-P within an error tolerance of �3 ppm, we were unable to
confidently assign an elemental composition to the additional
mass. However, HCD fragmentation of the modified peptide (m/z
524.29) efficiently produced fragment b-ions with and without
the modification in the same ion scan. The difference between
these ions was 146.058 Da (see Fig. S1 in the supplemental mate-
rial). Leveraging, high mass accuracy, and resolution of the tan-
dem MS (MS/MS) measurements enabled a determination of the
elemental composition of the modification with an error tolerance
of �3 ppm. From the delta mass calculation, we computed an
elemental composition of C6H10O4 for the unknown modification
on Arg32 (calculated as 146.05791 Da; 0.6-ppm difference). The
elemental composition and exact mass were then searched against
databases of known posttranslational modifications and matched
to a deoxyhexose— either rhamnose or fucose (24).

Though the data suggest that the modification represents a
deoxyhexose, the analysis is limited to the known posttransla-
tional modifications. To confirm whether the modification indeed
represents a deoxyhexose, ETD/HCD multi-stage MS (MS3) anal-
ysis was performed to gain structural information about the mod-
ification. ETD fragmentation of the SGRNAAVVK peptide gener-
ated a c3� ion composed of the SerGlyArg modified tripeptide
(m/z 464.246). This c3� ion was isolated and fragmented further
by HCD. From our ETD/HCD MS3 spectra, we identified the most
dominant peak as the single charged precursor ion at m/z 464.246
and identified five other abundant fragment ions measured at m/z
206.272, 301.161, 318.189, 360.199, and 446.236. On the basis of
the unique series of observed mass differences consisting of
163.084 u, 146.058 u, 104.047 u, and 18.011 u, a charge-directed
fragmentation pattern for the modified tripeptide was determined
that was consistent with a cyclic deoxyhexose attached to the �
amine of arginine (Fig. 1C). The ions with m/z values of 360.1994
and 446.2363 corresponded to neutral losses of C4H8O3 and H2O,
respectively, and are losses characteristic of sugar moieties with a
cyclic geometry (25). Ions at m/z 318.188 and 301.161 corre-
sponded to the neutral loss of C6H12O4 and C6H15NO4, respec-
tively, and are characterized by the loss of the modification either
with or without the ammonia moiety, a common neutral loss
observed for arginine. We determined that the ion at m/z 206.272
was a background ion by comparing the modified peptide MS3

spectra with the MS3 spectra of an unmodified peptide (see Fig. S2
and Table S1 in the supplemental material). The neutral losses
were compared with mass spectra of the deoxyhexoses rhamnose
and fucose, using the MassBank database (26). Common neutral
losses were identified only with the mass spectra of rhamnose,
which shared the neutral losses of H2O and C2H2O, while the ion
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at m/z 104.047 matched the neutral loss of C4H8O3 (see Ta-
ble S2 and Fig. S3).

Mechanism of rhamnosylation of P. aeruginosa EF-P.
Whereas, on the basis of mass concordance and fragmentation
patterns, the mass spectrometry data strongly suggest that the
modification represents a deoxyhexose, the possibility that the
glycan is fucose rather than rhamnose cannot be excluded. Using
the elemental composition as the input, the annotated genomes of
Pseudomonas species in KEGG were searched for biosynthesis
pathways of fucose and rhamnose (27, 28). Two sugar-nucleotide
pathways were identified, each dedicated to the biosynthesis of a
different rhamnose sugar-nucleotide isomer. The dTDP-L-
rhamnose sugar nucleotide is formed through the conserved
rmlABCD-encoded pathway, while the poorly conserved rmd ox-

idoreductase forms GDP-D-rhamnose (29). In addition, the
genomic neighborhoods of efp in strains related to P. aeruginosa
were searched, yielding a strongly conserved gene of unknown
function, PA2852 (earP). The sequences of rmlC, earP, and efp
coding the putatively modified arginine residue were used to
search 2,723 bacterial genomes (see Fig. S4 in the supplemental
material). Of the 252 species carrying efp, all contained earP, while
246 genomes carried rmlC. For the 6 species that do not carry
rmlC, 2 are known to be obligate predators of P. aeruginosa and 4
obligate endosymbionts of trypanosomes (see Table S3).

Guided by the bioinformatics results, we generated P. aerugi-
nosa strains with in-frame deletions of earP and efp, while a strain
with a disrupted rmlC gene was obtained from a previous study
(30). EF-P in E. coli has been reported to provide ribosomes with

FIG 1 Mass spectrometry characterization of rhamnosylated EF-P. (A) A mass spectrum of His6 –EF-P protein, recorded on a 7T FT-ICR instrument, from
which protein molecular masses were calculated. (B) Lys-C-digested peptide fragmented by ETD maps the additional mass of 146.057 Da on Arg32. The
precursor ion, m/z 349.865, is indicated by a dashed line. (C) A proposed fragmentation pattern based on ETD-HCD MS3 data from the c3� ion. The neutral
losses are colored uniquely to associate the fragment ion with the hypothetical structure. The asterisk indicates a background ion. The precursor ion, m/z 464.246,
is indicated by a dashed line.
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assistance when translating consecutive proline codons. The
translation efficiency of poly-prolines for each of the mutant
strains was evaluated using a GFP-linked in vivo reporter system.
On average, rmlC::aac1, �earP, and �efp showed 3.6-, 3.5-, and
25-fold decreases in GFP-Pro4/mCherry levels compared to the
wild type (WT), respectively (Fig. 2). Relative modification levels
were directly assessed in each mutant strain by purifying His6 –
EF-P and subjecting the resulting proteins to mass spectrometric
analyses. The majority (91%) of His6 –EF-P was modified when it
was purified from WT strains, while a complete absence of mod-
ification was observed for the earP mutant, and EF-P purified
from rmlC strains yielded less than 5% modified protein (see
Fig. S5 in the supplemental material).

The near-absence of modified EF-P from the rmlC mutant im-
plicated dTDP-L-rhamnose as the substrate for rhamnose addi-
tion. Cell lysate-synthesized [14C]dTDP-L-rhamnose was used in
a reconstituted in vitro reaction with purified EarP and EF-P, and
the rhamnosylation reaction, monitored over a period of 30 min,
showed that EF-P was modified only when EarP, EF-P, and dTDP-
L-rhamnose were all present (Fig. 3). In addition, R32A EF-P was
not modified, confirming the site of the modification to be Arg32.
The addition of unlabeled, commercially available dTDP-L-
rhamnose outcompeted the radiolabeled modification reaction,
confirming that [14C]dTDP-L-rhamnose had been successfully
prepared from crude lysate.

Physiological consequences of EF-P rhamnosylation. RmlC
has been previously characterized as participating in the assembly
of the core oligosaccharide, and deletion of the gene leads to al-
tered lipopolysaccharide (LPS) and flagellum-mediated motility
defects (31). In swimming motility assays, the efp, earP, and rmlC
mutants all exhibited a significant 2-fold decrease in the zone tra-
versed compared to the WT (P � 0.0001) (Fig. 4A). Vegetative
growth defects were also similar for the mutants, with doubling

times of about 100 min, while the WT strain and complemented
�efp and �rmlC strains had doubling times of 45 and 50 min,
respectively (Fig. 4C). The addition of either efp(R32K) or
efp(R32A) in trans did not complement the growth phenotypes of
the �efp strain but rather exacerbated them. Antibiotic suscepti-
bility was determined by disc diffusion assays and revealed that
antibiotics targeting cell wall synthesis exhibited significantly in-
creased activity against the efp, earP, and rmlC mutants compared
to that seen against the WT (P � 0.005), with ertapenem showing
the most pronounced effects (Fig. 4B). Antibiotics targeting pro-
tein synthesis appeared to have no inhibitory effect on the mutants
compared to the WT results.

DISCUSSION

Here we report a second example of EF-P rhamnosylation and
further demonstrate that the rhamnose glycan exists in a cyclic
confirmation, in contrast to the linear structures of �-Lys and
hypusine (21). Even though an open-chain confirmation of rham-
nose would allow a similar extent of protrusion into the peptidyl-
transfer center, the stability of such a modification would be com-
promised, as Schiff bases are naturally unstable. Nevertheless,
cyclic rhamnose is decorated with hydroxyl groups, which could
provide additional hydrogen bonding with the P site tRNA and
help restrict tRNA movement, while the �-Lys and hypusine mod-
ifications may directly interact with peptidyl-prolyl-tRNA to en-
hance the reactivity of the amino acceptor group.

Sugar modifications have rarely been studied with respect to
translation factors, the only known example being monoglycosy-
lation of EF1A by Legionella pneumophila, which suppresses global
translation in the host organism (32). Our data show that the
function of the rhamnose modification in vivo is to contribute to
the efficiency of translating consecutive proline codons. We ob-
served a range of intermediate effects on translation among the
EF-P and modification mutants studied, suggesting that a com-
pensatory mechanism exists when dTDP-L-rhamnose is not
formed by rmlC. Additionally, a low but detectable level of mod-
ified EF-P was found in the �rmlC::aac1 strain. One possible ex-
planation is that GDP-D-rhamnose is utilized by EarP as a less
efficient substrate, akin to �-lysine being used by PoxA in the
absence of yjeK. Alternatively, RmlC could have retained low lev-
els of activity after disruption with the gentamicin resistance gene
cassette, allowing small quantities of EF-P to be modified.

FIG 2 P. aeruginosa is dependent on EF-P to efficiently translate poly-proline
motifs. P. aeruginosa strains deficient in EF-P activity were assessed using a
Pro4-GFP reporter (PPPP). Results represent cells grown in LB and collected at
the mid-log phase and expressing the reporter. Error bars are the mean stan-
dard deviations of the results of three biological replicates.

FIG 3 In vitro rhamnosylation of EF-P. Modification of recombinant EF-P
was monitored over 30 min at 37°C with radioactive dTDP-L-[C14]rhamnose
(Rha) and resolved on an SDS-PAGE gel. The top image is of the Coomassie-
stained SDS-PAGE gel, while the image below is the same gel dried and ex-
posed on a phosphorimager after 24 h. A competition assay was performed
with 10 �M to 1 mM cold dTDP-L-rhamnose.
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Our bioinformatics search (see Table S3 in the supplemental
material) revealed that not all organisms harboring efp and earP
genomically carry a complete rmlABCD operon. Notably, all or-
ganisms that lack a complete rmlABCD operon require a host for
survival. For example, Micavibrio aeruginosavorus exists in two
phases, an attack phase and an attachment phase, both of which
have been transcriptionally characterized (33). Interestingly, efp
and earP were transcriptionally silent during the attack phase, but
during the attachment phase when M. aeruginosavorus interacted
with P. aeruginosa, a burst of expression was observed for efp and
earP. It is tempting to speculate that these obligate predators hi-
jack the host’s dTDP-L-rhamnose as a source to modify their own
EF-P, which would define the host range for M. aeruginosavorus, if
expression of poly-proline proteins is essential for predation.

Previous studies revealed swimming motility defects for rmlC
mutants, but the impaired motility was attributed to the absence
of rhamnosylated flagella and LPS (31). P. aeruginosa is rich in
poly-proline sequences, having ~3-fold more poly-proline-
containing proteins than Salmonella spp. (see Fig. S6 in the sup-
plemental material). Putative EF-P targets (i.e., 3 or more consec-
utive Pro proteins) in P. aeruginosa include proteins involved
with motility, protein synthesis, and DNA replication, making
it reasonable to suggest that the swimming impairment ob-
served in �rmlC::aac1 strains could be partly due to diminished
EF-P activity.

The fact that a variety of proteins depend on properly modified
EF-P for efficient synthesis is consistent with the observation that
P. aeruginosa strains mutated in efp, earP, and rmlC have promi-
nent growth defects and increased sensitivity to antibiotics. The
compounds with the largest effects against strains lacking EF-P or
its modification were inhibitors of cell wall synthesis, while anti-
biotics targeting protein synthesis had the least effect. A possible
explanation for the antibiotic susceptibility phenotype is that a
necessary component for beta-lactam specificity, MexA, carries a
triple-proline motif and may require EF-P for synthesis (34). Sim-
ilar results were corroborated in a previous study; however, those
experiments were conducted using �efp::gent PAO1 strains, which
may explain the observed differences in antibiotic susceptibility
(35).

The known EF-P glycosylation and lysylation pathways are
identifiable in only about 30% of all bacterial genomes; the ge-
nomes of many of the bacteria apparently lacking such pathways,
for instance, species of Actinobacteria, nevertheless encode a sig-
nificantly higher number of poly-proline motifs than the majority
of organisms in other bacterial phyla. This suggests that an even
greater variety of EF-P posttranslational modification pathways
may have evolved than have already been described. Further stud-
ies into the structurally diverse modifications of EF-P are now
warranted to better understand the functional convergence of
these different proteins in translational control.

MATERIALS AND METHODS
Bacterial strains and routine growth. Strains and plasmids are listed in
Table S4 in the supplemental material. Bacteria were grown routinely in

FIG 4 Defining the physiological role of the EF-P pathway in P. aeruginosa.
(A) Swimming motility analyses were performed in triplicate, and data were
determined by measuring the diameter of the colonies after a period of 24 h.
ANOVA was used to determine statistical significance, which is represented by
two adjacent asterisks. (B) Antibiotic susceptibility was tested by plating cul-
tures of bacteria onto plates containing a variety of antibiotic discs targeting
cellular membranes and protein synthesis. Antibiotic concentrations differed
depending on the antibiotic, and analyses were conducted in three biological
replicates. A single asterisk signifies that the results from all three mutant
strains were found to be statistically significantly different from those from the

(Continued)

Figure Legend Continued

WT strain according to an ANOVA. (C) Inocula of saturated overnight cul-
tures were diluted 1,000-fold in LB, and growth curves were monitored over a
period of 10 h, with measurements taken every hour. The graph represents
averages of the results of three biological replicates, with errors bars represent-
ing the standard deviations of the means.
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Luria-Bertani (LB) broth or on LB agar plates at 37°C. In some cases,
P. aeruginosa was grown on Vogel Bonner minimal (VBM) base agar
(Difco). All P. aeruginosa strains used were derived from strain PAK (36).
E. coli K-12 strain SM10 was used for conjugation of plasmids into
P. aeruginosa (37). The following concentrations of antibiotics were used:
for ampicillin, 200 �g/ml for E. coli; for gentamicin, 15 �g/ml for E. coli
and 75 �g/ml for P. aeruginosa; for carbenicillin, 150 �g/ml for P. aerugi-
nosa; for spectinomycin, 50 �g/ml for E. coli and 500 �g/ml for P. aerugi-
nosa; and for streptomycin, 50 �g/ml for E. coli and 250 �g/ml for
P. aeruginosa.

Plasmid and strain constructions and mutagenesis. All PCR-
generated plasmid insertion fragments were confirmed by DNA sequenc-
ing. efp and earP in-frame deletion mutants and a strain encoding His6 –
EF-P were constructed using the sacB� pEX18Ap suicide vector (38). For
the in-frame deletion mutants, two ~500-bp fragments from the regions
immediately upstream and downstream of the area to be deleted were
amplified by PCR and cloned into the pEX18Ap vector. For the strain
encoding His6-Efp, two ~500-bp fragments from the region immediately
upstream and downstream of the second efp codon were amplified by
PCR. The primers incorporated a region encoding His6 immediately
downstream of the efp initiation codon and were joined by sewing overlap
extension (SOE) PCR (39) and then cloned into pEX18Ap. The plasmids
were integrated into the P. aeruginosa chromosome following conjugation
from E. coli, and sucrose-resistant carbenicillin-sensitive segregants were
isolated on agar containing 10% (wt/vol) sucrose. Deletions were verified
by genomic PCR analysis using primers flanking the mutated region but
outside the pEX18Ap clone insertion.

The pAJD2217 araBp-His6-efp expression plasmid was constructed by
amplifying His6-efp from genomic DNA of strain AJDP739 and cloning it
into plasmid pHERD20T. Mutagenesis of His6-efp was performed using a
QuikChange site-directed mutagenesis kit (Stratagene) to generate
efp(R32A) and efp(R32K) in expression plasmids pAIR010 and pAIR015,
respectively. T5p-His6-earP expression plasmid pAJD2457 was con-
structed by amplifying earP lacking its initiation codon from the P. aerugi-
nosa genome and cloning it into plasmid pQE30 as a BamHI-HindIII
fragment. T7p-rmlA expression plasmid pAIR0017 was constructed by
amplifying rmlA from P. aeruginosa genomic DNA and cloning it into a
pET33b(�) plasmid as a EcoRI-NcoI fragment. araBp-Pro4-sfGFP-
itagmCherry and araBp-sfGFP-itagmCherry expression plasmids pAIR021
and pAIR023 were generated as a KpnI-EcoRI fragment and cloned into
pHERD20T adapted from previously described templates (40, 41). rmlC
was amplified from the PAK genome and cloned into pHERD20T to form
the pAIR040 complementation plasmid.

Swimming motility assay. WT (PAK), �efp, �rmlC, and �earP
P. aeruginosa strains were grown to saturation in Luria broth. Luria broth
agar plates (0.3% agar) were poured on the day of use, with 28 ml media
per plate. After plates had solidified for a minimum for 4 h, a toothpick
dipped into the saturated culture penetrated halfway into the agar. Plates
were incubated at 37°C for 24 h. After incubation, plates were imaged and
the distance of migration was measured using VisionWorksLS acquisition
and analysis software.

Antibiotic susceptibility assay. WT (PAK), �efp, �rmlc, and �earP
P. aeruginosa strains were grown in Luria broth at 37°C with shaking to an
optical density at 600 nm (OD600) of 0.5. A sterile swab was dipped into
the culture and streaked on a Luria broth agar plate in order to form a
bacterial lawn. Oxoid antimicrobial susceptibility test discs were manually
placed on the surface of the plate. Plates were incubated at 37°C for 24 h.
After incubation, plates were imaged and the zone of inhibition was mea-
sured using VisionWorksLS acquisition and analysis software.

Bioinformatics and statistics. Genomic neighborhood clustering of
earP was observed using SEEDViewer based on the protein sequence of earP
from Pseudomonas aeruginosa PAO1 (42). BLAST searches of a database
constructed from NCBI’s 2,773 bacterial genomes (ftp://ftp.ncbi.nih.gov/
genomes/Bacteria/) were performed for earP, rmlC, and efp (43). The
presence of rmlC, earP, and efp was plotted across a taxonomic tree gen-

erated using ITOL (44). The statistical significance of the results of the
motility and antibiotic assays was determined by performing an analysis
of variance (ANOVA), and the resulting P values were corrected for mul-
tiple comparisons using a Dunnet test.

His-tagged purification of EarP and EF-P. XJB BL21(DE3) cells were
used in all cases for recombinant protein expression. N-terminal His6 –
EF-P was expressed in LB supplemented with 0.2% arabinose and
150 �g/ml carbenicillin and grown for 16 h at 37°C. N-terminal His6-earP
was expressed in LB by growing cells to the mid-log phase followed by
induction with 1 mM IPTG (isopropyl-�-D-thiogalactopyranoside) and
growth overnight at 20°C. Cells were pelleted at 7,500 � g for 10 min. Lysis
of cell pellets and subsequent purification were carried out at 4°C with
cells resuspended in lysis buffer (10 mM Tris-HCl [pH 7.4], 500 mM
NaCl, 5 mM imidazole, and a single tablet of Roche Complete protease
inhibitor) and lysed by sonication. Lysate was clarified at 75,600 � g and
loaded onto a gravity column with Talon resin. The column was washed
with 50 column volumes of wash buffer (10 mM Tris-HCl [pH 7.4],
500 mM NaCl, 5 mM imidazole) and eluted with wash buffer supple-
mented with 200 mM imidazole. Elutent fractions were pooled, concen-
trated, and dialyzed against 10 mM Tris (pH 7.4)–100 mM NaCl–2 mM
BME (�-mercaptoethanol)–10% glycerol.

Modification characterization by high-resolution mass spectrome-
try. His6 –EF-P was purified from strains lacking efp or earP in an indi-
vidual manner and subjected to liquid chromatography-tandem mass
spectrometry (LC-MS�) using a triple-quadrupole mass spectrometer
(API III�; Applied Biosystems) connected to an in-line fraction collec-
tion device using a method adapted from previous reports (45, 46). Sam-
ples were injected onto a polymeric reversed-phase column (Polymer
Labs) (PLRP/S; 5 �m pore size, 300 Å, 2 by 150 mm, 40°C) previously
equilibrated in 95% buffer A and 5% buffer B (buffer A, 0.1% formic
acid–water; buffer B, 0.1% formic acid–50% acetonitrile–50% isopropa-
nol) and eluted (100 �l/min) with increasing percentages of buffer B (0
min/5% buffer B, 5 min/5% buffer B, 45 min/90% buffer B). Fractions
were collected into microcentrifuge tubes and stored at �20°C for further
analysis. Data were processed using MacSpec 3.3, Hypermass, and Bio-
Multiview 1.3.1 software to determine which fractions contained EF-P
(Applied Biosystems).

Selected high-performance LC (HPLC) fractions collected during LC-
MS� were introduced into the FT-ICR instrument by a direct infusion
nanospray method, as performed before (45). All samples were analyzed
using a hybrid linear ion-trap/FT-ICR mass spectrometer (7T, LTQ FT
Ultra; Thermo Scientific) operated with a standard (up to m/z 2,000) or
extended (up to m/z 4,000) mass range. Spectra were derived from an
average of between 100 and 400 transient signals. Data were analyzed
using ProSight PC software (Thermo Fisher).

Samples were proteolytically digested with Lys-C (Promega) and di-
luted (1/10) into a 30% acetonitrile–1% acetic acid solution, and 5 �l to
10 �l of the dilution was loaded into a Picotip (New Objective) metal-
coated static nanospray tip (2 �m tip inner diameter [ID]). The nanos-
pray tip was placed in a FlexSpray stage (Thermo Scientific) that was
attached to an Orbitrap Elite mass spectrometer with ETD (electron trans-
fer dissociation) (Thermo Scientific), and a 1.5-kV spray voltage was ap-
plied to generate the electrospray. Data were manually collected using
Orbitrap Tune Plus software, and the capillary temperature was set to
300°C. MS1 data were collected in the Orbitrap with a resolution value of
240,000, an automatic gain control (AGC) target of 1E6 ions, and an
injection time of 250 ms. MS2 data were generated by ETD with a 100-ms
activation time, and data were collected in the Orbitrap with a resolution
value of 240,000, an AGC target value of 5E4 ions, and an injection time of
250 ms. MS3 data were collected by selecting an ion of interest from the
MS2 data and further fragmenting it by higher-energy collision-induced
dissociation (HCD) and collecting the data in the Orbitrap mass analyzer
(under conditions identical to the MS2 conditions). All data acquisition
was performed for 1-min intervals.
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Estimation of rhamnosylated EF-P levels. Three hundred nanograms
of peptides was separated by reverse-phase HPLC (Dionex) on a C18AQ

column (Michrom Bioresources Inc.) (0.2 mm by 150 mm, 3 �m pore
size, 200 Å) coupled to an LTQ Orbitrap XL instrument (Thermo Fisher
Scientific). In all cases, peptide separation was accomplished with water
(buffer A) and acetonitrile (buffer B) with the addition of 0.1% formic
acid as an ion-pairing agent. Peptides were loaded onto an Acclaim Pep-
Map100 C18 trap cartridge (Dionex) (0.3 mm by 5 mm, 5 �m pore size,
100 Å) and washed with 5% buffer B for 3 min. Peptides were eluted at a
flow rate of 2 �l/min with an increasing linear gradient of 5% to 30% buf-
fer B over 47 min. The column was subsequently washed with 90% buffer
B for 5 min, and the system was equilibrated for 10 min prior to perform-
ing an independent system wash to ascertain sample carryover.

An LTQ Orbitrap XL instrument was used to identify and estimate levels
of both modified and unmodified forms of P. aeruginosa EF-P. Peptides were
ionized using a captive spray ionization source (Michrom Bioresources Inc.)
with an ionization voltage and a capillary temperature of 2.0 kV and 175°C,
respectively. Positive-ion data acquisition was performed in a data-
dependent fashion with dynamic exclusion and preview modes enabled. The
top 5 precursor ions were selected for fragmentation with dynamic exclusion
settings as follows: repeat count, 2; repeat duration, 20 s; exclusion list size,
100 entries; exclusion duration, 60 s; exclusion mass width, �1.50 m/z. Pre-
cursor ions underwent collision-induced dissociation fragmentation in the
LTQ linear ion trap with a normalized collision energy (NCE) level of 35%.
RAW data were converted to mzXML files using MSConvert (47, 48) and
searched with MassMatrix (49, 50) against a UniProt P. aeruginosa PAO1
proteome concatenated with modified forms of the EF-P sequence. To differ-
entiate between rhamnosylated and nonrhamnosylated EF-P, extracted-ion
chromatograms (XIC) were produced from the 3� charged species contain-
ing unique transitions. The yield of rhamnosylated EF-P was estimated by
quantifying the corresponding XIC peaks. Quantification was performed us-
ing Thermo Xcalibur version 2.0 with Genesis algorithm peak detection and a
smoothing value of 5.

In vivo reporter. Overnight LB cultures of strains harboring the re-
porter construct were inoculated into fresh LB media containing 0.2%
arabinose for induction or into LB media without arabinose (to serve as a
control for background fluorescence). Once the log phase was reached, 1
ml of cells was collected and washed 3 times with 1� phosphate-buffered
saline solution to remove excess LB, which has a strong emission signal at
the same wavelength as GFP (51). Fluorescence readings for GFP and
mCherry were measured using a Fluorolog-3 instrument as described
previously (41, 52).

Enzymatic synthesis of dTDP-[14C]rhamnose. dTDP-[14C]Rha was
prepared from [U14C]sucrose (PerkinElmer) as described previously
(53), with minor alterations. The reaction was carried out with 50 �Ci
(442/mCi/mmol, 113 nmol) of vacuum-dried [U-14C]sucrose, 40 mM
KH2PO4 (pH 7.0), 0.5 U of sucrose phosphorylase (Sigma), 1 mM TTP, 2
U of inorganic pyrophosphatase (Roche), 0.5 mg of lysate from XJB
BL21(DE3) cells expressing rmlA, 875 �M NADPH, 50 mM HEPES buffer
at pH 7.0, and 10 mM MgCl2. After 1 h of incubation at 37°C, the reaction
mixture was supplemented with 200 �l of crude E. coli XJB BL21(DE3)
lysate grown to the mid-log phase and an additional 35 �l of 10 mM
NADPH was reacted at 37°C for another 30 min. The reaction mixture
was then filtered using an Amicon Ultra-0.5 3-kDa centrifugal filter device
and vacuum dried to a final volume of 250 �l.

In vitro rhamnosylation of EF-P. The in vitro reaction mixture was
composed of purified His6-EarP and His6–EF-P, dTDP[14C]rhamnose,
1 mM MgCl2, 10 mM Tris-HCl (pH 7.5), and 100 mM NaCl, unless otherwise
stated. Competition assays were performed in the presence of cold dTDP-L-
rhamnose (Carbosynth) at concentrations ranging from 100 �M to 1 mM.
All reactions were carried out at 37°C for 30 min, and all reaction mixtures
were quenched in 5� sodium dodecyl sulfate-polyacrylamide gel electropho-
resis loading buffer. Reactions were then run on a 14% SDS-PAGE gel, and
radioactivity was detected by phosphorimaging.
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