240 research outputs found
A good leaf order on simplicial trees
Using the existence of a good leaf in every simplicial tree, we order the
facets of a simplicial tree in order to find combinatorial information about
the Betti numbers of its facet ideal. Applications include an Eliahou-Kervaire
splitting of the ideal, as well as a refinement of a recursive formula of H\`a
and Van Tuyl for computing the graded Betti numbers of simplicial trees.Comment: 17 pages, to appear; Connections Between Algebra and Geometry,
Birkhauser volume (2013
The application of parameter sensitivity analysis methods to inverse simulation models
Knowledge of the sensitivity of inverse solutions to variation of parameters of a model can be very useful in making engineering design decisions. This paper describes how parameter sensitivity analysis can be carried out for
inverse simulations generated through approximate transfer function inversion methods and also by the use of feedback principles. Emphasis is placed on the use of sensitivity models and the paper includes examples and a case study involving a model of an underwater vehicle. It is shown that the use of sensitivity models can provide physical understanding of inverse simulation solutions that is not directly available using parameter sensitivity analysis methods that involve parameter perturbations and response
differencing
Using the Uncharged Kerr Black Hole as a Gravitational Mirror
We extend the study of the possibility to use the Schwarzschild black hole as
a gravitational mirror to the more general case of an uncharged Kerr black
hole. We use the null geodesic equation in the equatorial plane to prove a
theorem concerning the conditions the impact parameter has to satisfy if there
shall exist boomerang photons. We derive an equation for these boomerang
photons and an equation for the emission angle. Finally, the radial null
geodesic equation is integrated numerically in order to illustrate boomerang
photons.Comment: 11 pages Latex, 3 Postscript figures, uufiles to compres
Imaging a 1-electron InAs quantum dot in an InAs/InP nanowire
Nanowire heterostructures define high-quality few-electron quantum dots for
nanoelectronics, spintronics and quantum information processing. We use a
cooled scanning probe microscope (SPM) to image and control an InAs quantum dot
in an InAs/InP nanowire, using the tip as a movable gate. Images of dot
conductance vs. tip position at T = 4.2 K show concentric rings as electrons
are added, starting with the first electron. The SPM can locate a dot along a
nanowire and individually tune its charge, abilities that will be very useful
for the control of coupled nanowire dots
Feedback methods for inverse simulation of dynamic models for engineering systems applications
Inverse simulation is a form of inverse modelling in which computer simulation methods are used to find the time histories of input variables that, for a given model, match a set of required output responses. Conventional inverse simulation methods for dynamic models are computationally intensive and can present difficulties for high-speed
applications. This paper includes a review of established methods of inverse simulation,giving some emphasis to iterative techniques that were first developed for aeronautical applications. It goes on to discuss the application of a different approach which is based on feedback principles. This feedback method is suitable for a wide range of linear and nonlinear dynamic models and involves two distinct stages. The first stage involves
design of a feedback loop around the given simulation model and, in the second stage, that closed-loop system is used for inversion of the model. Issues of robustness within
closed-loop systems used in inverse simulation are not significant as there are no plant uncertainties or external disturbances. Thus the process is simpler than that required for the development of a control system of equivalent complexity. Engineering applications
of this feedback approach to inverse simulation are described through case studies that put particular emphasis on nonlinear and multi-input multi-output models
Representation theory of super Yang-Mills algebras
We study in this article the representation theory of a family of super
algebras, called the \emph{super Yang-Mills algebras}, by exploiting the
Kirillov orbit method \textit{\`a la Dixmier} for nilpotent super Lie algebras.
These super algebras are a generalization of the so-called \emph{Yang-Mills
algebras}, introduced by A. Connes and M. Dubois-Violette in \cite{CD02}, but
in fact they appear as a "background independent" formulation of supersymmetric
gauge theory considered in physics, in a similar way as Yang-Mills algebras do
the same for the usual gauge theory. Our main result states that, under certain
hypotheses, all Clifford-Weyl super algebras \Cliff_{q}(k) \otimes A_{p}(k),
for , or and , appear as a quotient of all super
Yang-Mills algebras, for and . This provides thus a family
of representations of the super Yang-Mills algebras
Betti numbers for numerical semigroup rings
We survey results related to the magnitude of the Betti numbers of numerical
semigroup rings and of their tangent cones.Comment: 22 pages; v2: updated references. To appear in Multigraded Algebra
and Applications (V. Ene, E. Miller Eds.
Graph products of spheres, associative graded algebras and Hilbert series
Given a finite, simple, vertex-weighted graph, we construct a graded
associative (non-commutative) algebra, whose generators correspond to vertices
and whose ideal of relations has generators that are graded commutators
corresponding to edges. We show that the Hilbert series of this algebra is the
inverse of the clique polynomial of the graph. Using this result it easy to
recognize if the ideal is inert, from which strong results on the algebra
follow. Non-commutative Grobner bases play an important role in our proof.
There is an interesting application to toric topology. This algebra arises
naturally from a partial product of spheres, which is a special case of a
generalized moment-angle complex. We apply our result to the loop-space
homology of this space.Comment: 19 pages, v3: elaborated on connections to related work, added more
citations, to appear in Mathematische Zeitschrif
Regularity of Edge Ideals and Their Powers
We survey recent studies on the Castelnuovo-Mumford regularity of edge ideals
of graphs and their powers. Our focus is on bounds and exact values of and the asymptotic linear function , for in terms of combinatorial data of the given graph Comment: 31 pages, 15 figure
- …