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ABSTRACT 

 
Knowledge of the sensitivity of inverse solutions to variation of parameters of 
a model can be very useful in making engineering design decisions. This 
paper describes how parameter sensitivity analysis can be carried out for 
inverse simulations generated through approximate transfer function 
inversion methods and also by the use of feedback principles. Emphasis is 
placed on the use of sensitivity models and the paper includes examples and a 
case study involving a model of an underwater vehicle. It is shown that the 
use of sensitivity models can provide physical understanding of inverse 
simulation solutions that is not directly available using parameter sensitivity 
analysis methods that involve parameter perturbations and response 
differencing. 
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1. Introduction  
 
An inverse dynamic model generates a set of time histories of inputs to provide specified 
time histories of selected output variables of the model. In terms of practical applications 
this could involve finding the inputs needed to allow a fixed-wing aircraft, helicopter of 
marine vehicle to perform a specified manoeuvre or the inputs needed to allow a robotic 
arm to follow a given trajectory [1].  
 
In an engineering design context inverse solutions have been found to be particularly 
relevant in applications where actuator performance is important and where design 
decisions have to be made about the size and shape of control surfaces or to engines, 
motors and other elements within drive-train systems. This is a situation that arises very 
commonly in aircraft, marine and land vehicle design (see, e.g., [1], [2], [3]). If, for 
example, results from an inverse model of a vehicle or robot show that inputs cannot be 
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found that allow a specified manoeuvre to be performed, changes must be made either in  
terms of the required manoeuvre or in the design of the hardware and software of the 
system itself. Knowledge of the sensitivity of inverse solutions to variation of parameters 
of a model can be of considerable value in making these design decisions.  

 
In the case of single-input single-output (SISO) linear minimum-phase models a process of 
transfer function inversion can lead directly to an inverse description. In cases where the 
order of the numerator of the original transfer function is the same as the order of the 
denominator this inverse model can be implemented directly as an inverse simulation. In 
most situations that arise in practice this is not the case and in order to make the inverse 
model realisable one or more additional poles must be introduced. These additional 
“propering” poles must be positioned in the s-plane at points (in the left-half plane) that are 
far from the positions of poles and zeros of the model. This approach is described by 
Buchholz and von Grünhagen who have applied this type of methodology not only to SISO 
models but also to multi-input multi-output (MIMO) linear models [4]. 
 
Analytical methods of model inversion can be applied to some forms of linear model and 
techniques of model inversion have been developed for the nonlinear case (see, e.g., [5], 
and[6]). Such models require transformation to linear and controllable descriptions using 
nonlinear state feedback together with concepts from differential geometry. Other 
mathematical techniques, such as regularisation, are also relevant. However, although 
successful in some advanced applications involving automatic control (see, e.g., [7] and 
[8]), these analytical methods for nonlinear systems have not been used extensively in 
engineering design, in part, perhaps, because they involve specialist mathematical methods 
and concepts that are not widely used in  most areas of engineering.  
 
Approaches based entirely on simulation have been found to offer an interesting and 
attractive alternative to analytical methods of model inversion.  Several inverse simulation 
methods have been developed which involve the use of iterative numerical methods (see, 
e.g., [1], [2]) and these can be computationally intensive in the case of complex nonlinear 
models. Although these numerical approaches have origins in specific areas of engineering 
application they are applicable, in a general way, to many forms of linear and nonlinear 
mathematical models. For example, methods of this kind developed initially for helicopter 
flight mechanics and pilot handling qualities investigations, have been applied very 
successfully in other areas such as ship steering control systems analysis [9]. 

 
A completely different approach, based on feedback principles (see, e.g., [4], [10]), has a 
long history that is linked to the use of feedback methods in generating inverse functions 
on analog computers. Essentially, this involves the creation of a high gain feedback 
pathway around the model for each output variable of interest. The patterns of the 
reference signals for each of these feedback loops then form the required time histories of 
the corresponding output variables. The inverse solution is obtained from the signals at the 
inputs to the model, provided the gain of each feedback loop is high enough over the 
frequency range of interest.  Recent experience has demonstrated that this feedback-based 
approach can be applied successfully for many different linear and nonlinear inverse 
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simulation applications involving single-input single-output and multi-input multi-output 
nonlinear models and can show benefits in terms of computational efficiency compared 
with the more-established iterative methods [10]. Although high-gain proportional 
feedback is acceptable in many cases, the principle of feedback-based model inversion 
applies also to other forms of feedback structure and the approach is not limited to 
proportional control methods. Analysis of a linearised version of the given model using 
frequency domain or root locus methods of analysis can provide useful additional insight 
about the properties of the feedback loops and may allow parameters of the controller 
block to be adjusted to ensure that poles of the linearised inverse simulation model lie at 
points in the s-plane close to the zeros of the forward model. Branches of the root locus 
that tend towards infinity in the s-plane as the gain factor becomes large can be identified 
and their effect on the inverse simulation can be investigated. 
 
This paper presents a number of approaches to the sensitivity analysis of inverse 
simulation models. Particular emphasis is placed on methods that provide physical insight 
and computational efficiency, both in terms of the sensitivity analysis and inverse 
simulation techniques involved.  
 
2. A brief review of parameter sensitivity analysis concepts and methods. 
 
Parameter sensitivity analysis techniques are important for establishing how responses of a 
model change when parameters are varied. In particular, parameter sensitivity analysis can 
show which model parameters most influence the model behaviour and which parameters 
have little or no influence (see, e.g. [11], [12]). Models are never exact and it is important 
to be able to assess parametric dependencies at the model development stage as part of an 
investigation of modelling assumptions, simplifications and overall credibility.  
 
Sensitivity information is also very important for system optimisation in engineering 
design and it should be noted that methods of optimisation based on gradient methods 
make direct use of parameter sensitivity measures.   The sensitivity may be characterised in 
a number of ways using time-domain or frequency-domain performance measures (see, 
e.g., [12]). Information about parameter sensitivities, when taken together with structural 
information, can also be of considerable value in experimental modelling and, more 
generally, in the iterative development and refinement of complex system models using 
test data from real systems. 
 
Research by Tomović and his colleagues at the University of Belgrade (see, e.g., [11], [13] 
and [14]) has provided the foundation for much of the published work on sensitivity 
analysis of dynamic models. Important contributions have also been made by Frank [12] 
and others, including Rosenwasser and Yusupov [15].  
 
Central to sensitivity analysis methods is the concept of the sensitivity function. This is 
defined through a Taylor series expansion. For example, in the time domain,  if  ),( qty  is 
the response of a chosen variable of the model  and this is a function of time (t) and a 
parameter q, the difference between a response ),( 0qty  where q has the particular value  
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0q , and a response ),( 0 qqty ∆+  where the parameter q takes a new value qq ∆+0  is given 
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If q∆ is sufficiently small it follows that:  
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 is known as a first-order sensitivity function for the chosen variable y(t). 

Truncation of the series after the second term introduces a form of linearisation and allows 
the superposition principle to be used to find the effect of simultaneous changes of the 
values of several different parameters. For state-space models this concept of a parameter 

sensitivity function may be extended to the trajectory sensitivity function 
q∂

∂x
,
 
where x is 

the vector of state variables.  
 
The relative sensitivity function is a useful measure for making quantitative comparisons 
of the influence of different parameters. If these all involve the sensitivity of one specific 
model variable x to a number of different parameters an appropriate measure of relative 

sensitivity is given by �� ����� . For cases involving several variables a dimensionless form of 

measure  
�����

������ may be more useful, where
 
the quantity xmj is some representative value of 

the variable xj , such as the peak or mean-squared value. 
 
2.1 Estimation of sensitivity functions using repeated solutions. 
 
From Equation (2) it is possible to write: 
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The use of this finite difference approximation requires two repeated simulation runs and 
the selection of an appropriate parameter perturbation ∆�. The accuracy of the estimation 
depends on the choice of ∆� and tests may need to be repeated for several trial values of ∆� to establish an appropriate value. A separate sensitivity function evaluation must be 
made for each parameter that is of interest.  
 
The main weakness of this approach is associated with the fact that it requires taking the 
difference between two solutions. If these solutions have inherent numerical errors ε1(t) 
and ε2(t), it follows that: 
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Since ∆q is small the error due to the term ( )()( 21 tt εε − )/∆q may be significant. A more 
important problem with this method is that, for many types of engineering application, it is 
purely a numerical process and does not provide any physical insight regarding the 
sensitivity function. 
 
 
2.2 Determination of sensitivity functions using sensitivity models. 
 
If a general form of nonlinear dynamic model is described by a set of equations: 
 

0);;,.....,  ;,....,,;( 02121 =qtuuuxxxxf rnii &      (5) 

0);;,.....,  ;,....,,;( 02121 =qtuuuxxxyg rnii     (6) 

 
where nxxx ,....,, 21  are state variables, ruuu ,....., 21  are inputs and myyy ,...., 21  are the  

variables of interest, the sensitivity of the system to variation of a parameter q may be 
found by partial differentiation. This process gives a set of sensitivity equations which can 
also be termed the sensitivity model.  
 
When solved in conjunction with the system model equations, these sensitivity equations 
provide solutions for the sensitivity functions. The sensitivity equations are, in general, 
linear ordinary differential equations with time-varying coefficients. Figure 1 is a 
schematic diagram that represents the process of generating sensitivity functions using this 
approach. The structure of the sensitivity model is directly related to that of the system 
model in the case of a linear model with constant coefficients. However, for each selected 
variable, a given model must have as many sensitivity models as the number of parameters 
of interest although, for particular cases, methods have been developed that allow 
simultaneous estimation of many sensitivity functions using a single sensitivity model (see, 
e.g., [16]).  
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Figure1: Block diagram illustrating the relationship between the system model and the corresponding 
sensitivity model for the general case of a multi-input multi-output system model. 
 
Initial conditions for sensitivity models are, in most cases, zero. Non-zero initial conditions 
can arise, for example, in the sensitivity models for cases in which the system model has a 
variable structure and such issues are discussed in more detail by Frank [12]. 
 
3.  Sensitivity models in inverse simulation solutions for linear models. 
 
Although parameter sensitivity analysis is of special interest in the case of models 
involving nonlinearities, direct use of the sensitivity model approach is of limited 
usefulness due to the complex nature of the resulting sensitivity equations. Also, physical 
insight that can be gained from the sensitivity model in the nonlinear case is often rather 
limited.  More useful information about a nonlinear model can often be obtained from 
sensitivity analysis of linearised forms of description, although this may require the 
investigator to bring together results for a number of different operating conditions.  
             
            .  
3.1 Sensitivity analysis for inverse simulation models based on transfer function 
manipulation.  
 
a) The SISO case 
 
Consider a linear time-invariant system model G(s) described by a transfer function 
involving numerator and denominator polynomials A(s) and B(s), respectively, such that: 
 

System 

Model 

Model Inputs Model Outputs 

Sensitivity 
Model 

Sensitivity 
Functions 
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where U(s) represents the Laplace transform of the model input and Y(s) is the Laplace 
transform of the model output. The inverse model is given by: 
 ���
� �  ��
���
� � ��
���
�                                                       (8) 

 
and for this inverse model to be realisable it is essential that the order of the polynomial 
A(s) should equal to or greater than the order of B(s). This can be guaranteed if the original 
model is modified slightly through the introduction of a multiplicative term P(s) which is 
of sufficient order to give a denominator polynomial A(s)P(s) in the inverse model which is 
of the same order as the polynomial B(s). In the context of inverse simulation the 
introduction of this polynomial P(s) makes the inverse model “proper” and it should be 
chosen so that the additional poles in the inverse model lie far from the positions of the 
poles and the zero of G(s). In practical terms this should be typically at least 100 times 
further from the origin of the s-plane than the other poles and zeros. If the polynomials A(s) 
and B(s) are of the same order the additional polynomial P(s) is unity. The introduction of 
this additional multiplicative factor P(s) gives an inverse model of the form:          ����  � ������ ���                                                     �9� 

where  

����� � ��
���
���
�                                (10) 
 

  
The variable Y(s) in the inverse model is defined as the output required from the model and 
its form is chosen by the user. It is thus possible to find the sensitivity of the variable U(s) 
to any parameter q of the model G(s) by differentiating Equation (9) partially with respect 
to q, taking Y(s) as independent of q.  
 

This gives:                                    
���
��� �  � �����
��� ����
���  ����                         (11)                         

 
 
 
But  
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and if Y(s) is a time history specified by the investigator and therefore independent of q, as 
stated above, the right hand side of this equation must also be independent of  q. Thus it 
can be shown that: 
 

  
���
��� � � ����
� ����
���   ����                                              (13) 

 
and therefore the block diagram relating the inverse simulation model and the sensitivity 
model is as shown in Figure 2. 

 
Figure 2: Block diagram of inverse model and sensitivity model for the case of a linear time-invariant model 
described by a realizable inverse transfer function 1/G*(s). 
 
For a parameter q which appears both in the denominator and in the numerator of G(s) it 
can be shown that: 
 

   
���
��� � � �!��"��
�  ���� – �$�!��"��
�  ����                                           (14) 

 
If we are also interested in establishing the sensitivity of the inverse model to a parameter q 
associated with the polynomial P(s) the approach used is identical to that applied above and 
it can be shown readily that: 
 

���
��� � � �%�!��"��
�  ����                                                (15)                                                                                                                            

 
Example 
 
A linear SISO system is described by a transfer function given by: 
 

 
Inverse 

Simulation 
 

  
&'��(� � &'��(� )'��(�)*  

 
Sensitivity 

Model 
 

Required 
Output  

of Model  
 

Y(s) U(s) 
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where the nominal parameter values are K = 10, a = 1, b = 1 and c = 1.  
 
Sensitivity analysis using the sensitivity model approach of Equation (14) gives the 
following expressions for the sensitivity functions for the inverse model: 
 ���
��. � � �
-.  ����                                                              (17) 

 ���
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Examination of these equations provides some interesting information about the sensitivity 
functions. For example, the sensitivity model for parameter a is of first order, whereas 
those for parameters b and c are of second order. Also, the sensitivity functions for 

parameters b and c are related since Equations (18) and (19) show that  
���
��/  is the 

derivative of 1����12 . Such information can provide valuable physical insight in terms of 

differences in effects of the parameters of the forward model on the inverse simulation.  
 
It should be noted that the order of the numerator of the transfer function in Equation (16) 
is one and the order of the denominator is two and, thus, the ideal inverse model is 
unrealisable. For the purposes of model inversion an additional component of order one is 
therefore required and it is chosen to be: 
 3��� � 1 5 6�                                                                                 (21) 
 
For the parameter values given for Equation (16) a value of T of 0.01 s is appropriate. The 
specification for the desired output, y(t), is chosen to be an ideal saw-tooth type of signal 
starting at y = 0 at time t = 0 s with a period of 5 s. Figure 3(a) shows the result of an 
inverse simulation for this model using the transfer function manipulation, signal 
generation and linear system simulation facilities of the MATLAB Control Systems 
Toolbox [17]. The value of time constant T used in this case was 0.01s. Figure 3(b) shows 
the result of a test in which the signal resulting from the inverse simulation shown in 
Figure 3(a), is applied as input to the simulation model for G(s). It can be seen that the 
output of the forward model G(s) found in this way matches the specification given above. 
More detailed examination shows that the maximum error is of the order of 0.006, 
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confirming the accuracy of this inverse simulation procedure. This maximum error is 
reduced to 0.0006 if the time constant T of the “propering” component is reduced to 
0.001s. 
 

 
 

Figure 3(a): Input signal required to give the specified repeated ramp output, as generated by inverse 
simulation. 
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Figure 3b: Output of the model when subjected to input found from inverse simulation. 
 
As shown in the block diagram of Figure 2, the sensitivity of the variable u(t) in the inverse 
model to variation of the parameter a may be obtained by applying the signal u(t)  to a 
simulation representing the sensitivity model of Equation (17). The resulting sensitivity 
function is shown in Figure 4(a). Figure 4(b) shows the same sensitivity function 
determined by parameter perturbation for a 10% change in the parameter a. Although the 
forms of the sensitivity functions are the same by these two methods, numerical values for 
the sensitivity function found by parameter perturbation differ slightly from those 
determined by means of the sensitivity model. It should be noted that if the parameter 
change is reduced to 1% the result obtained by the perturbation methods becomes almost 
identical to that found from the sensitivity model. 
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Figure 4(a): Sensitivity function  

�7�.   determined from the sensitivity model. 

 
Figure 4(b): Sensitivity function  

�7�.   determined using the parameter perturbation approach for a change of 

10% in the parameter a.  
 
Results obtained using the sensitivity model approach for the parameters b and c are shown 
in Figures 5 and 6. In both cases results found using the parameter perturbation method for 
10% changes of each parameter are identical, within the width of the lines in the relevant 
plots, to those found using the sensitivity model.  
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Figure 5: Sensitivity function  

�7�/   determined from the sensitivity model. 

 
 
Figure 6: Sensitivity function  

�7�0   determined from the sensitivity model. 

 
 

b) The MIMO case 
 
Inversion of a matrix of transfer functions representing a MIMO system requires checks to 
be made to establish the number of eigenvalues (poles) and transmission zeros and to add 
propering poles (if necessary) to each transfer function within the matrix in order to make 
the inverse model realisable. The process of inversion for each transfer function and the 
generation of the associated sensitivity model involves use of the procedure applied in the 
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SISO case. Buchholz and von Grünhagen [4] present an approach for this procedure based 
on the use of the MATLAB Symbolic Math Toolbox [18] but the process can also be 
carried out manually.  
 
Example 
 
The example considered is one that has been used by O’Reilly and Leithead [19] and 
involves a two-input two-output model adapted from a system considered previously by 
Rosenbrock  [20]. The structure of the system is shown in Figure 7 and it may be seen that 
the model has four pathways between the inputs and outputs, described by transfer functions 
g11(s), g22(s), g12(s) and g21(s). The individual transfer functions are as follows:  
 
 8��(s) = 

�
-� ;    8�9��� = 
�
-� ;    89�(s) = 

:9
-; ;    899(s) = 
�
-�                       (22)  

 
 

                       
Figure 7: Block diagram of two-input two-output model considered in the example. 
 
The inverse model found using the inv function within the MATLAB Control System 
Toolbox [17] (which allows inversion of linear time-invariant transfer matrices) involves the 
following inverse transfer function matrix: 
 

< =.;;;;
�-�.;;;
-�
-�.??@ =.???@
�-�.;;;
-=.???@
-�.??@:=.;;;;
�:�,;;;
:�
-�.??@ =.;;;;
�-�.;;;
-�
-�.??@
B                                  (23) 
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Direct inversion of this model requires the addition of factors to each of the transfer 
functions to make this inverse model realisable but the process is straightforward in 
principle. Sensitivity functions for each of the transfer functions in the inverse simulation 
model may be obtained using the procedure applied in the SISO case, as described above. 
 
 
3.2 Sensitivity models for inverse simulations derived using feedback principles. 
 
The feedback approach to inverse simulation ([4], [10]) can be applied both to SISO and 
MIMO models. 
 
a) The SISO case 
 
Consider the feedback structure of Figure 8 with a linear SISO model G(s), leading to an 
inverse solution w(s) through application of the approach described in [10]. The sensitivity 
of the signal w(s) which represents the inverse solution, for a specific parameter qi  is as 
follows: 
 

 
 
 
 
 

     
(24) 

 
The sensitivity of the inverse solution can therefore be found by passing the signal w through 
a block having transfer function 
 

 
         (25) 

 
 
This transfer function depends entirely on the characteristics of the forward model G(s) and 
is found easily using analytical methods. It provides the same form of filter as in Equation 
(13), but as the numerator and denominator of the closed-loop system transfer function are 
always of the same order as the denominator of the open-loop transfer function there is no 
need for an additional propering element. A different transfer function applies for each 
parameter of the model and the sensitivity functions for a number of parameters can be 
found simultaneously using a number of parallel blocks of this kind, as shown in Figure 8. A 
similar approach can, in principle, be used for the case of an inverse simulation involving a 
nonlinear model. However, the determination of the sensitivity model F is more complicated 
and it may be preferable to apply a finite difference approach in such cases.   
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Figure 8: Block diagram of sensitivity model for determination of the inverse sensitivity for j parameters of a 
SISO linear model G(s) using the sensitivity model approach. 
 
Example 
 
Consider the linear SISO system considered in Section 3.1. The transfer function of the 
model has the form: 
 

����  � ,�
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and it follows from the discussion above that: 
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In all of these expressions the inverse solution U(s) is found from the signal W(s) in the 
feedback system. The filters required are therefore identical in form to those found above 
using the transfer function inversion approach. This is to be expected as the only difference 
is the way in which the inverse is generated and the sensitivity analysis is essentially the 
same in the two cases. 
 
Figure 9 shows the root locus diagram for the feedback system that provides the basis of this 
inverse simulation and analysis can be used to show that, for a gain factor of 1000, one 
closed loop system pole lies very close to the position of the zero of the forward model G(s) 
at s = -1, while the other pole lies on the negative real axis at about s = -10,000. Therefore, 
an inverse simulation result obtained using this value of gain factor should be almost perfect. 

 
 
Figure 9:  Root locus diagram, for the feedback system used for the inverse simulation of the transfer function 
G(s).  
  
For the same parameter values (K= 10, a = 1, b = 1 and c = 1) and the desired output used in 
the example of Section 3.1 with a value of feedback gain of 1000, the inverse solution is 
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indistinguishable from that found previously using the approximate transfer function 
inversion method and shown in Figure 3(a). Since the sensitivity models have the same 
structure and parameters as in the approximate transfer function approach sensitivity 
functions found by the feedback method of inversion are, in theory, the same as those 
obtained through approximate transfer function inversion and, for the cases considered, were 
found to be identical to those in Figures 4 (a), 5 and 6.  
 
The advantage of the feedback approach over the use of the approximate transfer function 
inversion method is that it can be applied to nonlinear models, as well as to linear 
descriptions. Also, the introduction of feedback means that there is no issue of realisability 
so that no additional poles have to be introduced. The positions of the poles of the closed-
loop system do have to be found and checks must be carried out to establish that the 
feedback system can provide an acceptable approximation to the inverse model. In the case 
of nonlinear models these tests may involve applying the input found from inverse 
simulation to the forward simulation model and establishing the magnitude of the model 
output error, using an appropriate measure, when the output is compared with the desired 
output. There are, of course, potential problems of instability within the closed-loop system 
and obvious limitations in the cases where the transfer function to be inverted is of non-
minimum phase form with one or more zeros in the right half plane.  
 
It should be noted that in the nonlinear case the sensitivity model becomes significantly 
more complicated and the time required for development of the sensitivity model and for 
implementation in the simulation can become significant. In such cases the process of 
obtaining sensitivity information using the parameter perturbation approach may well be 
more attractive, although useful insight about the properties of the sensitivity functions is 
lost.  
 
 b) The MIMO case 
  
Inverse simulation for MIMO models can also be carried out using the feedback technique. 
This can best be introduced by considering the general two-input two-output model used 
already in the example in Section 3.1. Figure 10 shows the block diagram for the feedback 
structure required for inverse simulation in this case.  
As would be expected there are two reference inputs and two feedback pathways. As in the 
SISO case, the inverse solutions are found from the signals at the inputs to the model block 
G(s).  These are shown as the signals at the outputs of the controller blocks k1 and k2 in 
Figure 10.  
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Figure 10: General form of block diagram for inverse simulation of a two-input two-output model. The signals 
w1 and w2 represent the inverse solutions. 
 
The cross-coupling through the blocks g12(s) and g21(s) in this model can be represented 
using a modified structure that forms the basis of the “individual channel” approach which 
has been developed for analysis and design of MIMO closed-loop systems [19]. In the 
Individual Channel Analysis and Design (ICAD) methodology the MIMO structure of the 
system may be translated into two SISO feedback loops while preserving loop interactions. 
Figures 11 and 12 show block diagrams of two channels which, taken together, are 
equivalent to the structure of Figure 10 [19].  
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Figure 11: Structure of Channel C1 which represents a single-input single-output model for the system linking 
reference input r1 and output y1 with an additional disturbance pathway representing the effect of reference 
input r2. For output y1 this is equivalent to the structure of the two-input two-output diagram of Figure 10.  

 
Figure 12: Structure of Channel C2 which represents a single-input single-output model for the system linking 
reference input r2 and output y2 with an additional disturbance pathway representing the effect of reference 
input r1. For output y2 this is equivalent to the structure of the two-input two-output diagram of Figure 10.  
 
The coupling pathways between Channel C1 and Channel C2 appear now as disturbance 
inputs. The quantities h1 and h2 in these diagrams are defined as follows: 
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E� = 
FGHGG�-FGHGG                                                                             (31) 

 
 E9 = 

F�H���-F�H��                                                          (32) 

 
The use of the concept of individual channels allows use of the feedback approach to the 
development of sensitivity models for the inverse simulation. For simplicity in interpreting 
results it is useful to investigate parameter sensitivities for each of the inputs in turn. If the 
reference input r2 is zero so that we are defining an output y1 only, the signal w1 has the form: 
 C�= 

H��HGGH��:HG�H�G  I�                                                            (33) 

 
Similarly, if the reference input r1 is zero so that we are defining an output y2 only, the signal 
w2 has the form: 
 C9= 

HGGHGGH��:HG�H�G  I9                                                            (34) 

 
Because of the cross-coupling within this model the inputs w1 and w2 both depend on all four 
of the transfer functions of this two-input two-output model. The sensitivity functions for 
these input signals can be obtained by partial differentiation for any parameter of any of 
these transfer functions. For example, if the parameter of interest appears only in the transfer 
function g11 it can be shown by simple manipulation that: 
 �JG��   = 

H���KGG�"HGGH��:HG�H�G  C�                                                           (35) 

 
and, similarly, if q is a parameter within the transfer function g22 then: 
 

 

�J�

��
  = 

HGG
�K��

�"

HGGH��:HG�H�G
  C9                                                           (36) 

 
Equivalent expressions can be derived for the cases involving parameters of the other two 
transfer functions within the model G(s). These all involve applying the signals w1 and w2 to 
sensitivity models which have a relatively simple form. As in the SISO case, sensitivity 
functions may be obtained simultaneously through the use of a number of sensitivity models 
in parallel, each coupled to the inverse simulation outputs w1 and w2. 
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Example 
 
The model considered is the two-input two-output description used in the MIMO example of 
Section 4.1. The individual transfer functions are as follows:  
 8��(s) = 

�
-� ;    8�9��� = 
�
-� ;    89�(s) = 

:9
-; ;    899(s) = 
�
-�                     (37) 

   
With a feedback structure of the form shown in Figure 10 and appropriately high values of 
gain in the blocks labelled k1 and k2 the two reference inputs r1 and r2  provide the two 
desired outputs y1 and y2  and the inverse solutions are the two signals at the input to the 
plant model. The two reference inputs are chosen to be sinusoidal in form with r1 = sin(2πf1t) 
and r2 = sin(2πf2t) where  f1 =  0.25 Hz and f2 = 0.5 Hz. Figures 13 and 14 show inverse 
simulation results for this set of desired outputs in terms of the signals at the two plant model 
inputs (w1(t) and w2(t)), obtained using gain factors k1 = k2 =1000. 
 

 
 
Figure 13: Inverse simulation results for the two-input two-output example for input w1(t). 

 
Application of the inputs shown in Figures 13 and 14 to the forward model of the system 
G(s) gives results that reproduce, almost exactly, the desired sinusoids. The maximum output 
error in both cases is of the order of 3L10-3, which is small compared with the maximum 
output values of unity. The use of larger values of the feedback loop gain factors would 
reduce these errors but would increase the stiffness of the inverse simulation.  
 
Sensitivity analysis in this case follows the procedure outlined above, leading to expressions 
of the type given in Equations (35) and (36). For example, if the parameter of interest is in 
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the transfer function g11(s) (which has the general form   
0
-M with c = v =1), the sensitivity 

function equivalent to result from Equation (39) has the form: 
 �JG�0   = H���KGG�NHGGH��:HG�H�G C� = 

H��O PN�!QR��S
HGGH��:HG�H�G C� = 

:�
-;��
-���;
-T� C�            (38) 

 
Implementation of the sensitivity model of Equation (38) shows that the filter applied to the 
inverse solution given by the signal w1 has a simple structure involving two poles and one 
zero and presents no problems in terms of implementation. It is of interest to note one of 
these poles is not a pole of any of the plant transfer functions.  

 

 
Figure 14: Inverse simulation results for the two-input two-output example for input w2(t). 
 

 
4 Case study: A linearised model for diving motion of an unmanned 
underwater vehicle (UUV). 
  
The linearised dynamics describing diving motion of an underwater vehicle model [21], 
[22] involves a third-order model described by the following set of first-order equations: 
 
 

 
         (39) 
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The state variables q, θ and z are the pitch rate, pitch angle and vertical displacement and δs 
is the stern plate deflection. The parameters Mq, U�V  and Mδ are hydrodynamic coefficients, 
Iy is the moment of inertia of the vehicle for pitching motion, W is the weight of the 
vehicle, zG - zB is the vertical distance between the centre of gravity and the centre of 
buoyancy and u0 is the forward speed of the vehicle. The stern plane has actuator limits 
which restrict the control surface deflection to ± 25 degrees. Thus, if actuator signals are 
applied which correspond to values of surface deflection greater than this the surface 
displacement reaches a saturation limit at + 25 degrees or - 25 degrees.   
 
In simplified form these equations may be written as: 
 
 

(40) 
 

 
 
 
It may be seen from Equations (39) and (40) that the parameter a11 depends directly on Mq 

and inversely on Iy and U�V . Similarly, the parameter a12 depends directly upon W, zG and zB, 

and inversely on Iy and U�V  while b1 depends directly on Mδ and inversely on Iy and U�V . 
The only other significant parameter of Equation (40) is a32, which is –u0 and thus depends 
directly on the forward speed of the vehicle.  
 
The transfer functions relating the pitch rate, q, pitch angle, θ, and vertical displacement, z, 
to the stern-plane deflection, δs, are as follows: 
 ��
�W!�
� = 

/G

�:.GG
:.G�                                                              (41) 

 X�
�W!�
� = 
/G
�:.GG
:.G�                                                              (42) 

 Y�
�W!�
� = 
.Z�/G
�:.GG
:.G�                                                              (43) 

 
 
For typical operating conditions the parameters are a11 = -0.7, a12 = -0.3, u0 = 1.832 m/s and 
b1= 0.035. Design of a feedback system for inverse simulation for a defined pitch-rate time 
history is very straightforward and can be achieved with proportional control using high 
gain feedback, as in the SISO example in this section. If the trajectory is defined in terms 
of the pitch angle, θ, or vertical displacement, z, simple root locus analysis shows that 
proportional control is no longer appropriate since there are additional closed-loop poles 
present which are located at points in the s-plane that are too close to the poles and zeros of 
the model. In this case a useful alternative involves design of a feedback system for inverse 
simulation using proportional plus rate feedback.  Using feedback of 6000 from the pitch 
rate variable it can be shown that for values of gain factor in the pitch angle feedback loop 
of 3L105 the inverse simulation model has zeros at the positions of the two poles of the 
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forward model (s = -0.35±j0.42) and two additional poles that lie far from these points (at 
approximately s = -100 rad/s). Results for a demanded sinusoidal form of pitch-angle 
trajectory, with these gain factors in the feedback loops, are shown in Figure 15. 
 
It can be seen from the result that in order to generate the demanded response in terms of 
the pitch angle, θ, the maximum stern plane deflections (approximately ± 1.3 rad.) would 
be very much larger than the upper limit of the actuator and control surface deflection (25 
deg.). Thus the pattern of input required for this demanded manoeuvre could not be applied 
and the requirement would have to be modified or, if it was essential to be able to follow 
this specific pattern of pitch change, fundamental re-design of the control surface and 
actuator would be necessary. 
 

 
Figure 15: Stern-plane input signal found from inverse simulation for required trajectory involving a 
demanded sinusoidal change of pitch angle for gains of 300,000 in the feedback loop involving θ and 6000 in 
the feedback loop involving q. 
 
Note that application of the stern-plane deflection signal of Figure 15 to the forward model 
of the UUV (without control surface limits) gives an output which is almost identical to the 
required sinusoid, as shown in Figure 16. This demonstrates satisfactorily that the input 
generated using inverse simulation produces the demanded output when applied to the 
given model.  
 
Application of the technique outlined above for determination of the sensitivity of the 
inverse solution to parameters of the given model, such as a11,  a12  and b1, involves the 
application of appropriate filters Fqi(s) to the simulated signal which represents the required 
control surface input δs(t).  
 
In the case of the parameter a11 the filter can be shown to have the transfer function: :

�:.GG
:.G�                                                        (44) 
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for a12, the transfer function is: 

      :�
�:.GG
:.G�                                              (45) 

 
and for the parameter b1 the transfer function has the form  
 :�/G                                                                   (46) 

 
 

 
Figure16: Pitch angle record found from application of stern-plane deflection signal of Figure 15 to the 
forward model of the UUV in the absence of control surface limits. 

 
Figure 17: Sensitivity function found from sensitivity model for parameter a11. 
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Figure 18: Sensitivity function found from sensitivity model for parameter a12. 
 
 
Results obtained, using this method of sensitivity analysis for the inverse simulation model, 

are shown in Figures 17 and 18. It can be seen that the parameter sensitivity function 
�W!�.GG 

is dominated by a cosine function of amplitude approximately 0.18 with a frequency which 

is the same as that of the required pitch change signal. The sensitivity function 
�W!�.G�  is 

sinusoidal in form and identical in frequency to that for a11 with a peak value of 
approximately 0.58. As would be expected from the form of the filters given above, the 
sensitivity function for a11 is shifted in phase compared with that for a12 by 90° and these 
two parameters therefore each have greatest influence on the stern plane deflection signal 
at different times. The influence of each of the parameters can be compared quantitatively 

using the relative sensitivity measures [�� �W!�.GG and [�9 �W!�.G�. On that basis it may be shown 

that the stern plane defection signal sensitivities for parameters a11 and a12 have similar 
magnitudes. It has already been noted, from Equations (39) and (40), that the coefficient 
a11 is directly proportional to the parameter Mq which is one of the hydrodynamic 
coefficients of the underwater vehicle model, whereas the coefficient a12 is directly 
proportional to the parameter W (the weight of the vehicle) and to (zG-zB), which is the 
vertical distance between the centre of gravity and the centre of buoyancy. The sensitivity 
functions thus show that a change in the weight of the vehicle, or of the position of the 
centre of gravity relative to the centre of buoyancy, has no influence on the initial and final 
transients in the plot of control surface deflection (Figure 15). Since the coefficients a11 and 
a12 both involve the factor  1/(Iy - U�V ) it is clear that the parameter U� is the quantity which 
has most influence on the initial and final transients in the stern plane deflection records. 
Sensitivity information of this kind is potentially useful when considering actuator 
performance limits and when carrying out control system optimisation studies.  
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For the parameter b1 the form of the filter for generation of the sensitivity is very simple 

and involves only a gain factor - 
�/G . It is clear therefore that the sensitivity function for this 

parameter has a shape which is identical to the pattern of control surface deflection shown 
in Figure 15 and that this parameter therefore influences all parts of the control surface 
deflection record in the same way. 
 
It should be noted that sensitivity functions for the parameters found directly from the 
inverse simulation results using a perturbation approach give closely similar results. For 

example, perturbation results for the sensitivity functions 
�W!�.GG and 

�W!�.G�  for 10% changes in 

parameter values are almost identical to those shown in Figures 17 and 18.  
 

Similar information on inverse sensitivity of the control input \
 to variation of the model 
parameters could be derived in the same way for demanded changes of the vertical 
displacement z. In this case the feedback pathway of Figure 8 would involve the variable z 
and it can be shown, from Equation (43), that the sensitivity filters required for parameters 
a11, a12, and b1 would be identical to those given in Equations (44), (45) and (46). The 

sensitivity filter for parameter a32 can also be shown to have a transfer function 
�.Z� which is 

equivalent to 
:�7] . It can thus be seen that for variations in depth the sensitivity function 

�W!�.Z� 

depends inversely on the forward speed of the vehicle. Thus, as would be expected from 
physical reasoning, this shows that at low forward speeds of the vehicle larger stern plane 
deflections are required to produce a given change of vertical displacement than at higher 
forward speeds. 
  
5 Discussion and Conclusions 

 
Inverse simulation techniques provide information about the inputs that allow the output of 
a given system to match specific forms of required response. This could involve an aircraft, 
helicopter of marine vehicle performing a specified manoeuvre or the inputs that ensure 
that a robotic arm follows a given trajectory.  
 
Inverse simulation methods are especially relevant for applications in which actuator 
performance is important and where design decisions have to be made about the size and 
shape of control surfaces linked to actuators or to engines, motors and other drive-train 
components. For example, if an inverse simulation of a vehicle or robot shows that no 
inputs can be found that allow a specified manoeuvre to be performed, changes must be 
made to the required manoeuvre or within the hardware or software of the system itself. 
Within this design process knowledge of the sensitivity of inverse solutions to variation of 
parameters of a model can be of considerable importance, as introduced in Section 1.  
 
The methods of inverse simulation discussed in this paper involve approximate transfer 
function inversion (which is restricted to linear models) and a feedback approach which is 
applicable both to linear and nonlinear descriptions. This feedback-based method of inverse 
simulation has been described and applied in a recent paper [10] and it is believed that it 
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can have computational advantages compared with more established iterative methods of 
inverse simulation (e.g. [1], [2]).    
 
In addition to design applications, parameter sensitivity information can also be very useful 
within the model validation process when comparing model behaviour with experimental 
test records for the same manoeuvre. This issue has been touched upon by Thomson and 
Bradley [1] who state that “......despite the benefits, established parameter estimation 
methods such as the output error method have not been applied to the inverse problem”. 
This is an interesting area for future research and one for which access to parameter 
sensitivity information has potential importance, especially in the context of methods of 
system identification that involve the use of sensitivity concepts, such as those proposed by 
Knudsen [23], [24]. The reason for incorporating parameter sensitivity information within 
the identification process is that estimation of any given parameter requires a cost function 
that is sensitive to that parameter. The most sensitive parameters are likely to be the ones 
that are estimated most accurately. Knowledge of parameter sensitivities is thus very useful 
for assessing identification results.  
 
For linear models the sensitivity model approach to parameter sensitivity analysis can be 
applied both for inverse simulation responses generated using approximate transfer 
function inversion and also for inverse solutions found by use of the feedback approach. In 
all linear cases the sensitivity model appears to have advantages over parameter 
perturbation methods in terms of additional physical insight and also, in some cases, 
computational efficiency.  As indicated in Section 2.1, the estimation of sensitivity 
functions through application of the method of repeated solutions is a purely numerical 
procedure and has the disadvantage of requiring the difference to be taken between two 
simulation solutions that, inevitably, are very similar since the parameter perturbation 
must, by definition, be small. As shown in Sections 3.1 and 3.2 and in Section 4, the 
additional insight that is gained through use of the sensitivity model is especially evident in 
the case of inverse simulation of a linearised model. In such cases the sensitivity functions 
are derived from transfer functions where knowledge of the poles and zeros can provide 
valuable physical understanding that can be of direct use in the investigation of sensitivity 
issues.  An additional point of interest, which is mentioned in Section 3.2(a), is that the 
structure of the sensitivity models are the same for inverse simulations based on the 
approximate transfer function inversion method and for inverse simulations involving the 
feedback method.  
 
In the case of nonlinear models the sensitivity model can be complex and sensitivity 
analysis through parameter perturbation may be preferred. However, in such cases physical 
insight may be obtained through additional sensitivity analysis using a linearised version of 
the model for a specific operating point.  It is also possible to generate approximate 
sensitivity information in the nonlinear case by combining the use of a linearised sensitivity 
model for an appropriate operating condition with an inverse response obtained from a 
nonlinear inverse simulation, including solutions found using iterative methods of inverse 
simulation, such as those discussed in [1] and [2]. As with all investigations based on linear 
models, it is clear that caution must be exercised in interpreting results obtained from these 
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linearised sensitivity models but the physical insight that this process provides may well be 
useful. 
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