/.-

University
of Glasgow

(invesiras wra

Murray-Smith, D.J. The application of parameter sensitivity analysis
methods to inverse simulation models.Mathematical and Computer
Modelling of Dynamical Systems . ISSN 1744-5051

http://eprints.gla.ac.uk/66832/

Deposited on: 12" July 2012

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk


http://eprints.gla.ac.uk/view/author/4254.html
http://eprints.gla.ac.uk/view/journal_volume/Mathematical_and_Computer_Modelling_of_Dynamical_Systems.html
http://eprints.gla.ac.uk/view/journal_volume/Mathematical_and_Computer_Modelling_of_Dynamical_Systems.html

D.J. Murray-Smith
Mathematical and Computer Modelling of Dynamicast8yns

The Application of Parameter Sensitivity AnalysisMethodsto I nverse
Simulation M odels

David J. Murray-Smith
School of Engineering, University of Glasgow,
Rankine Building, Oakfield Avenue,
Glasgow G12 8LT, Scotland, United Kingdom.

ABSTRACT

Knowledge of the sensitivity of inverse solutionsvariation of parameters of
a model can be very useful in making engineeringighe decisions. This
paper describes how parameter sensitivity analyars be carried out for
inverse simulations generated through approximatnster function
inversion methods and also by the use of feedbaiciciples. Emphasis is
placed on the use of sensitivity models and thepegeludes examples and a
case study involving a model of an underwater \ehilt is shown that the
use of sensitivity models can provide physical usi@@ding of inverse
simulation solutions that is not directly availablging parameter sensitivity
analysis methods that involve parameter perturbatiand response
differencing.

Keywords: parameter sensitivity, inverse simulation, sevisjtimodel, underwater
vehicle.
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1. Introduction

An inverse dynamic model generates a set of timhes of inputs to provide specified
time histories of selected output variables of tiedel. In terms of practical applications
this could involve finding the inputs needed towalla fixed-wing aircraft, helicopter of
marine vehicle to perform a specified manoeuvréherinputs needed to allow a robotic
arm to follow a given trajectory [1].

In an engineering design context inverse solutibage been found to be particularly
relevant in applications where actuator performamcemportant and where design
decisions have to be made about the size and gbfapentrol surfaces or to engines,
motors and other elements within drive-train systefrhis is a situation that arises very
commonly in aircraft, marine and land vehicle desigee, e.g., [1], [2], [3]). If, for
example, results from an inverse model of a velacl®bot show that inputs cannot be
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found that allow a specified manoeuvre to be peréat, changes must be made either in
terms of the required manoeuvre or in the desigthefhardware and software of the
system itself. Knowledge of the sensitivity of ims® solutions to variation of parameters
of a model can be of considerable value in makiegé¢ design decisions.

In the case of single-input single-output (SIS@g&r minimum-phase models a process of
transfer function inversion can lead directly toiaverse description. In cases where the
order of the numerator of the original transferdtion is the same as the order of the
denominator this inverse model can be implementesgtity as an inverse simulation. In
most situations that arise in practice this is thet case and in order to make the inverse
model realisable one or more additional poles maestintroduced. These additional
“propering” poles must be positioned in tplane at points (in the left-half plane) that are
far from the positions of poles and zeros of thedehoThis approach is described by
Buchholz and von Grinhagen who have applied tipis of methodology not only to SISO
models but also to multi-input multi-output (MIM®@hear models [4].

Analytical methods of model inversion can be agplie some forms of linear model and
techniques of model inversion have been developedht nonlinear case (see, e.g., [5],
and[6]). Such models require transformation todmand controllable descriptions using
nonlinear state feedback together with conceptsn frdifferential geometry. Other
mathematical techniques, such as regularisatiom, aéso relevant. However, although
successful in some advanced applications involaagpmatic control (see, e.g., [7] and
[8]), these analytical methods for nonlinear systedmve not been used extensively in
engineering design, in part, perhaps, becauseitivejve specialist mathematical methods
and concepts that are not widely used in mossaskangineering.

Approaches based entirely on simulation have beemd to offer an interesting and
attractive alternative to analytical methods of eladversion. Several inverse simulation
methods have been developed which involve the tigerative numerical methods (see,
e.g., [1], [2]) and these can be computationaltgnisive in the case of complex nonlinear
models. Although these numerical approaches hagasiin specific areas of engineering
application they are applicable, in a general waymany forms of linear and nonlinear
mathematical models. For example, methods of timd &developed initially for helicopter
flight mechanics and pilot handling qualities intgations, have been applied very
successfully in other areas such as ship steeontyal systems analysis [9]

A completely different approach, based on feedl@akciples (see, e.g., [4], [10]), has a
long history that is linked to the use of feedbaokthods in generating inverse functions
on analog computers. Essentially, this involves ¢theation of a high gain feedback
pathway around the model for each output variablenterest. The patterns of the
reference signals for each of these feedback ltdogs form the required time histories of
the corresponding output variables. The inverset®ol is obtained from the signals at the
inputs to the model, provided the gain of each liee#d loop is high enough over the
frequency range of interest. Recent experiencedbanstrated that this feedback-based
approach can be applied successfully for many rdiffe linear and nonlinear inverse
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simulation applications involving single-input siegutput and multi-input multi-output
nonlinear models and can show benefits in termsoofiputational efficiency compared
with the more-established iterative methods [10]Jthéugh high-gain proportional
feedback is acceptable in many cases, the prinaplieedback-based model inversion
applies also to other forms of feedback structurd &he approach is not limited to
proportional control methods. Analysis of a linead version of the given model using
frequency domain or root locus methods of analgars provide useful additional insight
about the properties of the feedback loops and atlayv parameters of the controller
block to be adjusted to ensure that poles of thealised inverse simulation model lie at
points in the s-plane close to the zeros of thevdod model. Branches of the root locus
that tend towards infinity in theplane as the gain factor becomes large can bdifiden
and their effect on the inverse simulation cannvestigated.

This paper presents a number of approaches to ehsitisity analysis of inverse
simulation models. Particular emphasis is placeanethods that provide physical insight
and computational efficiency, both in terms of thensitivity analysis and inverse
simulation techniques involved.

2. A brief review of parameter senditivity analysis concepts and methods.

Parameter sensitivity analysis techniques are itapbfor establishing how responses of a
model change when parameters are varied. In pktjquarameter sensitivity analysis can

show which model parameters most influence the inoeleaviour and which parameters

have little or no influence (see, e.g. [11], [12)odels are never exact and it is important
to be able to assess parametric dependencies atdthel development stage as part of an
investigation of modelling assumptions, simplificas and overall credibility.

Sensitivity information is also very important feystem optimisation in engineering

design and it should be noted that methods of agdition based on gradient methods
make direct use of parameter sensitivity measurBse sensitivity may be characterised in
a number of ways using time-domain or frequency-gianperformance measures (see,
e.g., [12]). Information about parameter sensiggit when taken together with structural
information, can also be of considerable value xpeeimental modelling and, more

generally, in the iterative development and refieatnof complex system models using
test data from real systems.

Research by Tomo¥iand his colleagues at the University of Belgras#e( e.g., [11], [13]
and [14]) has provided the foundation for much loé fpublished work on sensitivity
analysis of dynamic models. Important contributitvase also been made by Frank [12]
and others, including Rosenwasser and Yusupov [15].

Central to sensitivity analysis methods is the ephof the sensitivity function. This is
defined through a Taylor series expansion. For gk@nin the time domain, ify(t,q) is
the response of a chosen variable of the model tlaisds a function of timet and a
parameter, the difference between a respong@, d,) whereq has the particular value
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0,, and a responsg(t,q, + Aq) where the parametgrtakes a new valug, +Aq is given
by
10%y

oy 2
t,q, +AQ) = y(t,q,) +==Ag+—=—=(AQ)" +.... 1
y(t, G +40) = y(t,0p) o q 2!0q2( Q) (1)
If Aqis sufficiently small it follows that:
oy
y(t. g +Ad) = y(t,0p) +a_qu 2)

The quantity(%/ is known as a first-order sensitivity function thie chosen variabigt).

Truncation of the series after the second ternodhices a form of linearisation and allows
the superposition principle to be used to find dffect of simultaneous changes of the
values of several different parameters. For stpseea models this concept of a parameter

o . . e . 0X .
sensitivity function may be extended to the trajecisensitivity functlona—q, wherex is

thevector of state variables.

Therelative sensitivity function is a useful measure for making quantitative congoas

of the influence of different parameters. If thedeinvolve the sensitivity of one specific

model variablex to a number of different parameteas appropriate measure of relative

sensitivity is given byy; ;—; . For cases involving several variables a dimenegs form of
;% . . .

measure%a—i;{ may be more useful, whetige quantityx.; is some representative value of
mj i

the variable , such as the peak or mean-squared value.

2.1 Estimation of sensitivity functions using repeated solutions.

From Equation (2) it is possible to write:

oy _ y(t.q, +Aq) — y(t.q,) @)
oo Aq

The use of this finite difference approximationuigs two repeated simulation runs and

the selection of an appropriate parameter pertiabat;. The accuracy of the estimation

depends on the choice Af and tests may need to be repeated for several/éizes of

Aq to establish an appropriate value. A separateitsatysfunction evaluation must be

made for each parameter that is of interest.

The main weakness of this approach is associatédthe fact that it requires taking the
difference between two solutions. If these soludidiave inherent numerical errargt)
ande;(t), it follows that:
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ﬂ — y(t, Yo +A0g) - y(t, qo) + &(t) —&,(1)
oq AQ AQ

(4)

SinceAq is small the error due to the terra, (t) — £,(t) )/Aq may be significant. A more
important problem with this method is that, for maypes of engineering application, it is
purely a numerical process and does not provide @mysical insight regarding the
sensitivity function.

2.2 Deter mination of sensitivity functions using sensitivity models,
If a general form of nonlinear dynamic model isad®ed by a set of equations:

£ (X3 X0 XG0 X 5 Uy, Uy U 5 850p) = 0 (5)
9 (Vi3 X0 Xpreeee X s Ugy Uyl 5 60p) =0 (6)

where X, X,,....,X, are state variabledj,u,,....U. are inputs andy,,Y,,....y,, are the

variables of interest, the sensitivity of the syst® variation of a parameter may be
found by partial differentiation. This process givee set of sensitivity equatiomdich can
also beermedthe sensitivity model.

When solved in conjunction with the system modelagns, these sensitivity equations
provide solutions for the sensitivity functions. eTkensitivity equations are, in general,
linear ordinary differential equations with timeryeng coefficients. Figure 1 is a
schematic diagram that represents the processnefating sensitivity functions using this
approach. The structure of the sensitivity moddllirectly related to that of the system
model in the case of a linear model with constaeffccients. However, for each selected
variable, a given model must have as many sertgitivodels as the number of parameters
of interest although, for particular cases, methbdse been developed that allow
simultaneous estimation of many sensitivity funesiaising a single sensitivity model (see,

e.g., [16]).
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Model Inputs Model Ouputs

System
) Model

Sensitivity
Function:

Sensitivity
Model

Figurel: Block diagram illustrating the relationshbetween the system model and the corresponding
sensitivity model for the general case of a muifitit multi-output system model.

Initial conditions for sensitivity models are, irost cases, zero. Non-zero initial conditions
can arise, for example, in the sensitivity modelsdases in which the system model has a
variable structure and such issues are discussadii@ detail by Frank [12].

3. Senditivity modelsin inverse smulation solutionsfor linear models.

Although parameter sensitivity analysis is of spkdnterest in the case of models
involving nonlinearities, direct use of the sendyi model approach is of limited
usefulness due to the complex nature of the regu#iensitivity equations. Also, physical
insight that can be gained from the sensitivity Bldd the nonlinear case is often rather
limited. More useful information about a nonlineaodel can often be obtained from
sensitivity analysis of linearised forms of destap, although this may require the
investigator to bring together results for a numifetifferent operating conditions.

3.1 Sensitivity analysis for inverse simulation models based on transfer function
manipulation.
a) TheSISO case

Consider a linear time-invariant system mod&(s) described by a transfer function
involving numerator and denominator polynomi&(s) andB(s), respectively, such that:
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Yes) _ _ AG)
U(s) G(s) = B(s) (7)

whereU(s) represents the Laplace transform of the modeltiapdY(s) is the Laplace
transform of the model output. The inverse modeiven by:

1 U(s) _ B(s)
G(s) Y(s) A(s)

(8)

and for this inverse model to be realisable itdsemtial that the order of the polynomial
A(s) should equal to or greater than the ordeB(gj. This can be guaranteed if the original
model is modified slightly through the introductioh a multiplicative ternP(s) which is
of sufficient order to give a denominator polynoh#és)P(s) in the inverse model which is
of the same order as the polynomB{s). In the context of inverse simulation the
introduction of this polynomiaP(s) makes the inverse model “proper” andsltould be
chosen so that the additional poles in the invemsdel lie far from the positions of the
poles and the zero @(s). In practical terms this should be typically aasgt 100 times
further from the origin of the-plane than the other poles and zeros. If the pohjalsA(Ss)
andB(s) are of the same order the additional polynorRig) is unity. The introduction of
this additional multiplicative factdP(s) gives an inverse model of the form:

Y(s)

UEs) = oo ©)
where
A P
G (s) = % (10)

The variableY(s) in the inverse model is defined as the outputiired from the model and
its form is chosen by the user. It is thus posdiblénd the sensitivity of the variablé(s)
to any parameteay of the modelG(s) by differentiating Equation (9) partially withspect
to q, takingY(s) as independent af

au(s) _ 1 3G*(s)
da  (G*(s)? dq

This gives:

Y(s) (91

But

Y(s) =G*(s)U(s) (12)
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and if Y(s) is a time history specified by the investigatod aherefore independent gf as
stated above, the right hand side of this equanaost also be independent @f Thus it
can be shown that:

au(s) 1 9G*(s)

dq - G*(s) 0dq

U(s) (13)

and thereforeghe block diagram relating the inverse simulatiovdel and the sensitivity
model is as shown in Figure 2.

Required
Output
f Model
or Mo Sensitivity N
vis Inverse ue Model
Simulation aq
> > 1 96 (s) —
L G'(s) oq
G*(s)

Figure 2: Block diagram of inverse model and sérigitmodel for the case of a linear time-invariambdel
described by a realizable inverse transfer funcli@(s).

For a parametay which appears both in the denominator and in the nuneo&®(s) it
can be shown that:

U (s) 9B(s) dA(s)
S) _ _0q __9q
g - B(s) U(s) A(s) U(s) (14)

If we are also interested in establishing the $ityi of the inverse model to a parameter
associated with the polynomi(s) the approach used is identical to that appliexvaland
it can be shown readily that:

U (s) dP(s)
S) _ _ aq
50— P U(s) 115

Example

A linear SISO system is described by a transfection given by:
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Clo) = K(s+a) 16
()= s2+bs+c (16)
where the nominal parameter valueskre 10,a=1,b=1 andc = 1.
Sensitivity analysis using the sensitivity modebigach of Equation (14) gives the
following expressions for the sensitivity functicies the inverse model:
o) _ _ 1 U 17
da s+a Q) (17)
aU(s) _ S U 18
b  sZ+bs+c (s) (18)
U(s) 1 . 10
dc  s2+bs+c (s) (19)
s _ _ 1y, 20
= " UO (20)

Examination of these equations provides some istieigeinformation about the sensitivity
functions. For example, the sensitivity model fargmetera is of first order, whereas
those for parameters and ¢ are of second order. Also, the sensitivity funasiofor

adu(s
parameterd andc are related since Equations (18) and (19) show th%tl()—) is the

derivative of%. Such information can providealuable physical insight in terms of
differences in effects of the parameters of thevéwd model on the inverse simulation.

It should be noted that the order of the numeratdahe transfer function in Equation (16)
is one and the order of the denominator is two dahds, the ideal inverse model is
unrealisable. For the purposes of model inversioadditional component of order one is
therefore required and it is chosen to be:

P(s)=1+Ts (21)

For the parameter values given for Equation (183lae of T of 0.01 s is appropriate. The
specification for the desired outpyt}t), is chosen to be an ideal saw-tooth type of digna
starting aty = 0 at timet = 0 s with a period of 5 s. Figure 3(a) shows rdmsult of an
inverse simulation for this model using the transfanction manipulation, signal
generation and linear system simulation facilitefs the MATLAB Control Systems
Toolbox [17]. The value of time constahused in this case was 0.01s. Figure 3(b) shows
the result of a test in which the signal resultingm the inverse simulation shown in
Figure 3(a), is applied as input to the simulatmadel forG(s). It can be seen that the
output of the forward modé&b(s) found in this way matches the specification giadove.
More detailed examination shows that the maximumorers of the order of 0.006,
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confirming the accuracy of this inverse simulatiprocedure. This maximum error is
reduced to 0.0006 if the time constahtof the “propering” component is reduced to
0.001s.

|:I|:|2 T T T T

-0.02

-0.04

-0.068

-0.03

012

'I:I1-"-1- | | 1 |
1] ] 10 15 20 248

Figure 3(a): Input signal required to give the $fiet repeated ramp output, as generated by inverse
simulation.
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12k -

1.4 1 1 1 1
] 5 10 15 20 25

Figure 3b: Output of the model when subjected pairfound from inverse simulation.

As shown in the block diagram of Figure 2, the gaity of the variableu(t) in the inverse
model to variation of the parametammay be obtained by applying the signé) to a
simulation representing the sensitivity model ofu&tipn (17). The resulting sensitivity
function is shown in Figure 4(a). Figure 4(b) shoW®e same sensitivity function
determined by parameter perturbation for a 10% géan the parametexr. Although the
forms of the sensitivity functions are the sametmse two methods, numerical values for
the sensitivity function found by parameter peratidn differ slightly from those
determined by means of the sensitivity model. ibudth be noted that if the parameter
change is reduced to 1% the result obtained byénirbation methods becomes almost
identical to that found from the sensitivity model.
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0.09

0.0z

0.07
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0.05

0.04

0.03

0.02

0.m

Figure 4(b): Sensitivity functior% determined using the parameter perturbationcambr for a change of
10% in the parametex

Results obtained using the sensitivity model apgrdar the parametetsandc are shown

in Figures 5 and 6. In both cases results founalguisie parameter perturbation method for
10% changes of each parameter are identical, witi@nwidth of the lines in the relevant
plots, to those found using the sensitivity model.
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0.05 T T T T

0.04

0.03

0.0z

0.01
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-0.03
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_DD5 1 1 1 1
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Figure 5: Sensitivity functior{:—z determined from the sensitivity model.

u] T T T T

-0.01

-0.02

-0.03

-0.04

-0.05

-0.06

-0.07

-0.08

-0.09

a1 1 1 1 1

Figure 6: Sensitivity functioﬁ;—? determined from the sensitivity model.

b) TheMIMO case

Inversion of a matrix of transfer functions repraggy a MIMO system requires checks to
be made to establish the number of eigenvalueggpaind transmission zeros and to add
propering poles (if necessary) to each transfectfan within the matrix in order to make
the inverse model realisable. The process of imwerfor each transfer function and the
generation of the associated sensitivity model lve® use of the procedure applied in the
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SISO case. Buchholz and von Griinhagen [4] preseapproach for this procedure based

on the use of the MATLAB Symbolic Math Toolbox [1Blt the process can also be
carried out manually.

Example

The example considered is one that has been use@’Rgilly and Leithead [19] and
involves a two-input two-output model adapted fransystem considered previously by
Rosenbrock [20]. The structure of the system @ahin Figure 7 and it may be seen that
the model has four pathways between the inputsatulits, described by transfer functions
011(9), 922(9), 912(S) andgy1(s). The individual transfer functions are as follows

1 1 -2 1
911(S) R 912(5) 11’ g21(8) =513’ 922(8) ) (22)
Uy Y1
» du 4+>O——>
A
+
> 921
— 912
U, + Y2
+ v

v

Figure 7: Block diagram of two-input two-output nreb@onsidered in the example.

The inverse model found using thev function within the MATLAB Control System
Toolbox [17] (which allows inversion of linear tinmevariant transfer matrices) involves the
following inverse transfer function matrix:

0.333352+1.33354+1  0.66675%+1.33354+0.6667

5+1.667 5+1.667 (23)
—0.33335%2-1,3335—1 0.333352+1.333s+1

s+1.667 S+1.667
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Direct inversion of this model requires the additiof factors to each of the transfer
functions to make this inverse model realisable thé& process is straightforward in
principle. Sensitivity functions for each of thansfer functions in the inverse simulation
model may be obtained using the procedure appli¢ide SISO case, as described above.

3.2 Sensitivity modelsfor inver se ssmulations derived using feedback principles.

The feedback approach to inverse simulation ([4)])[can be applied both to SISO and
MIMO models.

a) The SISO case

Consider the feedback structure of Figure 8 wilihear SISO mode(s), leading to an
inverse solutiom(s) through application of the approach describefd @}. The sensitivity
of the signalv(s) which represents the inverse solution, for a $jgquarameter; is as
follows:

AG(s)
ougg SO
daq, (1+C(s)G(s))*
VPN /O I [T NN < ©
@+C(9)G(s) 0q G(s) 0q (24)

Thesensitivity of the inverse solution can therefoeefdund by passing the signvathrough
a block having transfer function

1 9G(s)

G(9) g @9

I:qi (S) =

This transfer function depends entirely on the aberistics of the forward mod€él(s) and

is found easily using analytical methods. It pr@dadhe same form of filter as in Equation
(13), but as the numerator and denominator of kh&ed-loop system transfer function are
always of the same order as the denominator obprea-loop transfer function there is no
need for an additional propering element. A différ&ransfer function applies for each
parameter of the model and the sensitivity fundidor a number of parameters can be
found simultaneously using a number of paralletksdoof this kind, as shown in Figure 8. A
similar approach can, in principle, be used ford¢hse of an inverse simulation involving a
nonlinear model. However, the determination ofgaesitivity modeF is more complicated
and it may be preferable to apply a finite differempproach in such cases.
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Fa® [~

Fed |b— ow

Fi(® p—>

\ 4

C(s) > G(s) >

Figure 8: Block diagram of sensitivity model fortelenination of the inverse sensitivity fpparameters of a
SISO linear modeB(s) using the sensitivity model approach.

Example

Consider the linear SISO system considered in &8@il. The transfer function of the
model has the form:

(s) = s2+bs+c (26)
and it follows from the discussion above that:
o) _ _ 1 U 27
da s+a () (27)
au(s)
= U(s) (28)

ob S2+bs+c
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ou(s) 1 29
dc  s2+bs+c UGs) (29)
U _ 1 0
= = UG) (30)

In all of these expressions the inverse solutifg) is found from the signai(s) in the
feedback system. The filters required are thereieatical in form to those found above
using the transfer function inversion approachsTikito be expected as the only difference
is the way in which the inverse is generated amdstnsitivity analysis is essentially the
same in the two cases.

Figure 9 shows the root locus diagram for the feellsystem that provides the basis of this
inverse simulation and analysis can be used to ghaiy for a gain factor of 1000, one
closed loop system pole lies very close to thetwsof the zero of the forward mod@éls)

ats = -1, while the other pole lies on the negativd eeas at abous = -10,000. Therefore,
an inverse simulation result obtained using thiseaf gain factor should be almost perfect.

Root Locus
1 5 T T T T T T T I
1+ .
05k §
pe] :
&
=
P ] L -
=
[m7]
11
E
st -
Ak : 4
_1 5 | | | | | | | I
-4 -35 -3 -25 -2 15 -1 -0s 0 0s
Real Axis

Figure 9: Root locus diagram, for the feedbackesysused for the inverse simulation of the tranifaction
G(9).

For the same parameter valuks (10,a=1,b =1 andc = 1) and the desired output used in
the example of Section 3.1 with a value of feedbgaix of 1000, the inverse solution is
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indistinguishable from that found previously usitige approximate transfer function
inversion method and shown in Figure 3(a). Sinee ghnsitivity models have the same
structure and parameters as in the approximatesfearfunction approach sensitivity
functions found by the feedback method of inversawe, in theory, the same as those
obtained through approximate transfer function isi@ and, for the cases considered, were
found to be identical to those in Figure&4, 5 and 6.

The advantage of the feedback approach over thefudee approximate transfer function
inversion method is that it can be applied to nwdr models, as well as to linear
descriptions. Also, the introduction of feedbackame that there is no issue of realisability
so that no additional poles have to be introdudéd positions of the poles of the closed-
loop system do have to be found and checks mustabged out to establish that the
feedback system can provide an acceptable approgimi@ the inverse model. In the case
of nonlinear models these tests may involve applythe input found from inverse

simulation to the forward simulation model and bkshing the magnitude of the model
output error, using an appropriate measure, wherothput is compared with the desired
output. There are, of course, potential problemmstiability within the closed-loop system

and obvious limitations in the cases where thesteanfunction to be inverted is of non-
minimum phase form with one or more zeros in tgatrhalf plane.

It should be noted that in the nonlinear case #hesiivity model becomes significantly

more complicated and the time required for develapnof the sensitivity model and for

implementation in the simulation can become sigaift. In such cases the process of
obtaining sensitivity information using the paraereperturbation approach may well be
more attractive, although useful insight about pineperties of the sensitivity functions is

lost.

b) TheMIMO case

Inverse simulation for MIMO models can also be iearout using the feedback technique.
This can best be introduced by considering the rgéne/o-input two-output model used
already in the example in Section 3.1. Figure 1@shthe block diagram for the feedback
structure required for inverse simulation in these.

As would be expected there are two reference inpudistwo feedback pathways. As in the
SISO case, the inverse solutions are found fronsitdpeals at the inputs to the model block
G(s). These are shown as the signals at the ougfutse controller blockdk; andk; in
Figure 10.
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Figure 10: General form of block diagram for inveesimulation of a two-input two-output model. Thgnsls
w; andw, represent the inverse solutions.

The cross-coupling through the bloalis(s) and g»1(s) in this model can be represented
using a modified structure that forms the basishef“individual channel” approach which
has been developed for analysis and design of Midfi3ed-loop systems [19]. In the
Individual Channel Analysis and Design (ICAD) mealbtogy the MIMO structure of the

system may be translated into two SISO feedbadgislaghile preserving loop interactions.
Figures 11 and 12 show block diagrams of two chianménich, taken together, are
equivalent to the structure of Figure 10 [19].
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Figure 11: Structure of Channe] ®hich represents a single-input single-output rhmtethe system linking
reference input; and outpul; with an additional disturbance pathway represegrtire effect of reference
inputr,. For outputy; this is equivalent to the structure of the twotihfwo-output diagram of Figure 10.
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Figure 12: Structure of Channe} @hich represents a single-input single-output rhéatethe system linking
reference input, and outpul, with an additional disturbance pathway represegrtire effect of reference
inputr,. For outputy, this is equivalent to the structure of the twotihfwo-output diagram of Figure 10.

The coupling pathways between Channela@d Channel £appear now as disturbance
inputs. The quantitiels; andh; in these diagrams are defined as follows:
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_ kig1a

hl B 1+k1911 (31)
_ k2922

hy = 1+k2022 (32)

The use of the concept of individual channels adlawge of the feedback approach to the
development of sensitivity models for the inversawdation. For simplicity in interpreting
results it is useful to investigate parameter seitses for each of the inputs in turn. If the
reference input; is zero so that we are defining an outpudnly, the signalv; has the form:

W= —922 £l (33)
911922— 912921

Similarly, if the reference input is zero so that we are defining an outgudnly, the signal
w, has the form:

d11
w,=— 1 34
2 911922~ 912921 2 ( )

Because of the cross-coupling within this modelitipaitsw; andw, both depend on all four
of the transfer functions of this two-input two-put model. The sensitivity functions for
these input signals can be obtained by partiakdifitiation for any parameter of any of
these transfer functions. For example, if the p&tamof interest appears only in the transfer
functiongy; it can be shown by simple manipulation that:

ow g 9911
=% (35)
aq 911922~ 912921
and, similarly, ifg is a parameter within the transfer functmathen:
9g
ow, — 9117522 (36)
dq 9119227912921

Equivalent expressions can be derived for the cemedving parameters of the other two
transfer functions within the modéi(s). These all involve applying the signalgs andw, to
sensitivity models which have a relatively simpteni. As in the SISO case, sensitivity
functions may be obtained simultaneously throughute of a number of sensitivity models
in parallel, each coupled to the inverse simulatatputsw; andw,.
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Example

The model considered is the two-input two-outpugodigtion used in the MIMO example of
Section 4.1. The individual transfer functions asdollows:

1 1 -2 1

911(S) 11’ 912(5) =11’ 921(8) =13 922(8) =t (37)
With a feedback structure of the form shown in FegilO and appropriately high values of
gain in the blocks labellek; andk, the two reference inputs andr, provide the two
desired outputy; andy, and the inverse solutions are the two signakheatinput to the
plant model. The two reference inputs are chosédre teinusoidal in form withy = sin(2f;t)
andr, = sin(ztf,t) where f; = 0.25 Hz and,; = 0.5 Hz. Figures 13 and 14 show inverse
simulation results for this set of desired outpaotgerms of the signals at the two plant model
inputs (vi(t) andws(t)), obtained using gain factoks = k, =1000.

a 1 2 3 4 o B 7 g = 10

Figure 13: Inverse simulation results for the twptit two-output example for input(t).

Application of the inputs shown in Figures 13 ardta the forward model of the system
G(s) gives results that reproduce, almost exactlygdemred sinusoids. The maximum output
error in both cases is of the order of1®°, which is small compared with the maximum
output values of unity. The use of larger valueghaf feedback loop gain factors would
reduce these errors but would increase the stgfoéthe inverse simulation.

Sensitivity analysis in this case follows the pihae outlined above, leading to expressions
of the type given in Equations (35) and (36). Faareple, if the parameter of interest is in
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the transfer functio;(s) (which has the general formﬁ% with ¢ = v =1), the sensitivity
function equivalent to result from Equation (39% the form:

9911 _—¢_
an — 92275, — 922 [(S+17)2] — —(s+3) w (38)
ac 911922912921 1 911922912921 (s+1)(3s+5) 1

Implementation of the sensitivity model of Equati@3) shows that the filter applied to the
inverse solution given by the signa| has a simple structure involving two poles and one
zero and presents no problems in terms of impleatient It is of interest to note one of
these poles is not a pole of any of the plant fearfanctions.

o o

15F i | i | !
I
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| \
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a 1 2 3 4 5 B 7 g 9 10

Figure 14: Inverse simulation results for the twptit two-output example for inpub(t).

4 Case study: A linearised moded for diving motion of an unmanned
underwater vehicle (UUV).

The linearised dynamics describing diving motionaaf underwater vehicle model [21],
[22] involves a third-order model described by thiéowing set of first-order equations:

M, _(ZG_ZB)W | M,

y g (39)

N Q@ QO
1
H
o
o o
N © O
+
o
[ ¥
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The state variableg ¢ andzare the pitch rate, pitch angle and vertical disphaent ands

is the stern plate deflection. The paramek#gsM, andM; are hydrodynamic coefficients,
ly is the moment of inertia of the vehicle for pitapimotion, W is the weight of the
vehicle, zs - zz is the vertical distance between the centre ofityaand the centre of
buoyancy andy is the forward speed of the vehicle. The stern elaas actuator limits
which restrict the control surface deflection t@% degrees. Thus, if actuator signals are
applied which correspond to values of surface defla greater than this the surface
displacement reaches a saturation limit at + 2%esEgor - 25 degrees.

In simplified form these equations may be written a

q a, a, Oja| |b (40)
@l=|1 0 0|8+ 0|o()
z 0 a, O0fz 0

It may be seen from Equations (39) and (40) thatpdwrametea;; depends directly oM,
and inversely oy andM,. Similarly, the parametexr . depends directly upow, z; andzs,
and inversely orly and M, while b; depends directly oM; and inversely oy andM,.
The only other significant parameter of Equatio) (4 as,, which is iy and thus depends
directly on the forward speed the vehicle.

The transfer functions relating the pitch ratepitch anglef, and vertical displacemerz,
to the stern-plane deflectiofy, are as follows:

Q(S) — b15 (41)

8s(s) sZ-ay15—ai;

9(5) —_ bl (42)

8s(s)  sZ-ay15—aq;

z(s) _ aszzbq (43)

8s(s)  s?-ayys—ag;

For typical operating conditions the parametersagie -0.7,&,=-0.3 U= 1.832 m/sand

b;= 0.035. Design of a feedback system for inverse lsitian for a defined pitch-rate time
history is very straightforward and can be achiewdth proportional control using high
gain feedback, as in the SISO example in this @ectf the trajectory is defined in terms
of the pitch anglef), or vertical displacemeng, simple root locus analysis shows that
proportional control is no longer appropriate siticere are additional closed-loop poles
present which are located at points in ¢f@ane that are too close to the poles and zeros of
the model. In this case a useful alternative ingsldesign of a feedback system for inverse
simulation using proportional plus rate feedbatksing feedback of 6000 from the pitch
rate variable it can be shown that for values af gactor in the pitch angle feedback loop
of 3x10° the inverse simulation model has zeros at the ipasitof the two poles of the
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forward model ¢ = -0.3540.42) and two additional poles that lie far fronegh points (at
approximatelys = -100 rad/s). Results for a demanded sinusoidah fof pitch-angle
trajectory, with these gain factors in the feedbladps, are shown in Figure 15.

It can be seen from the result that in order toegate the demanded response in terms of
the pitch angled, the maximum stern plane deflections (approxinyatell.3 rad.) would

be very much larger than the upper limit of theuattr and control surface deflection (25
deg.). Thus the pattern of input required for ttesnanded manoeuvre could not be applied
and the requirement would have to be modified foit, was essential to be able to follow
this specific pattern of pitch change, fundamemgadesign of the control surface and
actuator would be necessary.

058k —

05k -

Control surface defl. (rad)
]

_1 i 5 1 1 1 1 1 1
] 10 20 30 40 a0 &0 7o

Time (5]

Figure 15: Stern-plane input signal found from isee simulation for required trajectory involving a
demanded sinusoidal change of pitch angle for gzfil30,000 in the feedback loop involvidgnd 6000 in
the feedback loop involving.

Note that application of the stern-plane deflec8anal of Figure 15 to the forward model
of the UUV (without control surface limits) givea autput which is almost identical to the
required sinusoid, as shown in Figure 16. This destrates satisfactorily that the input
generated using inverse simulation produces theadded output when applied to the
given model.

Application of the technique outlined above foratatination of the sensitivity of the
inverse solution to parameters of the given mosleth asa;;, aj2 andbs, involves the

application of appropriate filtefs;(s) to the simulated signal which represents theiredu

control surface inpuig(t).

In the case of the parametgi the filter can be shown to have the transfer fuomcti
=S
(44)

Sz—ans—alz
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for a;,, the transfer function is:
-1

Sz—alls—alz

and for the parametér the transfer function has the form

-1

by

0.0z

(45)

(46)
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70

Figurel6: Pitch angle record found from applicatmihstern-plane deflection signal of Figure 15 he t

forward model of the UUV in the absence of consiadface limits.
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Figure 17: Sensitivity function found from sensiwmodel for parameteay ;.
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Inverse senaitivity function for a12

Time [[s)

Figure 18: Sensitivity function found from sensiwmodel for parameteay,.

Results obtained, using this method of sensitiaitglysis for the inverse simulation model,
are shown in Figures 17 and 18. It can be seerthikgbarameter sensitivity functi%"fii1
is dominated by a cosine function of amplitude agpnately 0.18 with a frequency which
is the same as that of the required pitch changeabki The sensitivity functiog% is

sinusoidal in form and identical in frequency taattfor a;; with a peak value of
approximately 0.58. As would be expected from thienf of the filters given above, the
sensitivity function fora; is shifted in phase compared with that &sby 90° and these
two parameters therefore each have greatest irtduen the stern plane deflection signal
at different times. The influence of each of theapaeters can be compared quantitatively
. . o 368 38 .
using the relative sensitivity measumas?11 anda,, Bas On that basis it may be shown
that the stern plane defection signal sensitivif@sparameters;; and a;; have similar
magnitudes. It has already been noted, from Equat{89) and (40), that the coefficient
ap1 is directly proportional to the paramet®f, which is one of the hydrodynamic
coefficients of the underwater vehicle model, whsréhe coefficienta;; is directly
proportional to the paramet&Y (the weight of the vehicle) and tas{zs), which isthe
vertical distance between the centre of gravity #nedcentre of buoyancy. The sensitivity
functions thus show that a change in the weighthefvehicle, or of the position of the
centre of gravity relative to the centre of buoygrias no influence on the initial and final
transients in the plot of control surface deflect{&igure 15). Since the coefficierstg and
a2 both involve the factor (- M,) it is clear that the paramet#, is the quantity which
has most influence on the initial and final transsein the stern plane deflection records.
Sensitivity information of this kind is potentialluseful when considering actuator
performance limits and when carrying out contrateyn optimisation studies.
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For the parametdr, the form of the filter for generation of the seivsty is very simple
and involves only a gain factOIbLl- . Itis clear therefore that the sensitivity fuoatfor this
1

parameter has a shape which is identical to thernpabf control surface deflection shown
in Figure 15 and that this parameter thereforeu@rtes all parts of the control surface
deflection record in the same way.

It should be noted that sensitivity functions fbe tparameters found directly from the

inverse simulation results using a perturbationr@ggh give closely similar results. For

example, perturbation results for the sensitivlinydtions% and% for 10% changes in
11 12

parameter values are almost identical to those shiowigures 17 and 18.

Similar information on inverse sensitivity of thentrol inputd, to variation of the model
parameters could be derived in the same way foradded changes of the vertical
displacement. In this case the feedback pathway of Figure 8ldvowolve the variable
and it can be shown, from Equation (43), that gresgivity filters required for parameters
a11, a12, andb; would be identical to those given in Equations)(445) and (46). The
sensitivity filter for parameteas, can also be shown to have a transfer func;ﬁerwhich is

32
equivalent to;—l. It can thus be seen that for variations in dep¢hsensitivity functiorfa&

0 32
depends inversely on the forward speed of the lehitus, as would be expected from
physical reasoning, this shows that at low forwspdeds of the vehicle larger stern plane
deflections are required to produce a given charigertical displacement than at higher
forward speeds.

5 Discussion and Conclusions

Inverse simulation techniques provide informatibow the inputs that allow the output of
a given system to match specific forms of requnesponse. This could involve an aircratft,
helicopter of marine vehicle performing a specifradnoeuvre or the inputs that ensure
that a robotic arm follows a given trajectory.

Inverse simulation methods are especially relevfantapplications in which actuator
performance is important and where design decisi@ave to be made about the size and
shape of control surfaces linked to actuators oertgines, motors and other drive-train
components. For example, if an inverse simulatibra @ehicle or robot shows that no
inputs can be found that allow a specified manoeugrbe performed, changes must be
made to the required manoeuvre or within the haredwea software of the system itself.
Within this design process knowledge of the serigitof inverse solutions to variation of
parameters of a model can be of considerable irapogt as introduced in Section 1.

The methods of inverse simulation discussed in pliger involve approximate transfer
function inversion (which is restricted to lineaodels) and a feedback approach which is
applicable both to linear and nonlinear descriggiorhis feedback-based method of inverse
simulation has been described and applied in antquaper [10] and it is believed that it



D.J. Murray-Smith
Mathematical and Computer Modelling of Dynamicast8yns

can have computational advantages compared witle established iterative methods of
inverse simulation (e.g. [1], [2]).

In addition to design applications, parameter sitsi information can also be very useful
within the model validation process when comparmmgdel behaviour with experimental
test records for the same manoeuvre. This issudéas touched upon by Thomson and
Bradley [1] who state that “......despite the bésgfestablished parameter estimation
methods such as the output error method have rest applied to the inverse problem”.
This is an interesting area for future research and for which access to parameter
sensitivity information has potential importancepecially in the context of methods of
system identification that involve the use of sevisy concepts, such as those proposed by
Knudsen [23], [24]The reason for incorporating parameter sensitivitgrmation within
the identification process is that estimation of given parameter requires a cost function
that is sensitive to that parameter. The most Beagparameters are likely to be the ones
that are estimated most accurately. Knowledge aimater sensitivities is thus very useful
for assessing identification results.

For linear models the sensitivity model approaclpacameter sensitivity analysis can be
applied both for inverse simulation responses gdadr using approximate transfer
function inversion and also for inverse solutioasrfd by use of the feedback approach. In
all linear cases the sensitivity model appears &vehadvantages over parameter
perturbation methods in terms of additional physiosight and also, in some cases,
computational efficiency. As indicated in Secti@ml, the estimation of sensitivity
functions through application of the method of \gpd solutions is a purely numerical
procedure and has the disadvantage of requiringlifference to be taken between two
simulation solutions that, inevitably, are very gam since the parameter perturbation
must, by definition, be small. As shown in Sectiédh& and 3.2 and in Section 4, the
additional insight that is gained through use ef $knsitivity model is especially evident in
the case of inverse simulation of a linearised rhddesuch cases the sensitivity functions
are derived from transfer functions where knowledfé¢he poles and zeros can provide
valuable physical understanding that can be otctlnee in the investigation of sensitivity
iIssues. An additional point of interest, whichmentioned in Section 3.2(a), is that the
structure of the sensitivity models are the sameirigerse simulations based on the
approximate transfer function inversion method &rdinverse simulations involving the
feedback method.

In the case of nonlinear models the sensitivity ehochn be complex and sensitivity
analysis through parameter perturbation may beepedf. However, in such cases physical
insight may be obtained through additional senigjti@nalysis using a linearised version of
the model for a specific operating point. It is@lpossible to generate approximate
sensitivity information in the nonlinear case bynmning the use of a linearised sensitivity
model for an appropriate operating condition with iaverse response obtained from a
nonlinear inverse simulation, including solutiosifid using iterative methods of inverse
simulation, such as those discussed in [1] and4&)with all investigations based on linear
models, it is clear that caution must be exercisadterpreting results obtained from these
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linearised sensitivity models but the physicalghsithat this process provides may well be
useful.
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