565 research outputs found

    General Relativity as a Theory of Two Connections

    Full text link
    We show in this paper that it is possible to formulate General Relativity in a phase space coordinatized by two SO(3)SO(3) connections. We analyze first the Husain-Kucha\v{r} model and find a two connection description for it. Introducing a suitable scalar constraint in this phase space we get a Hamiltonian formulation of gravity that is close to the Ashtekar one, from which it is derived, but has some interesting features of its own. Among them a possible mechanism for dealing with the degenerate metrics and a neat way of writing the constraints of General Relativity.Comment: 18 pages, LATEX, Preprint CGPG-93/09-

    From Euclidean to Lorentzian General Relativity: The Real Way

    Get PDF
    We study in this paper a new approach to the problem of relating solutions to the Einstein field equations with Riemannian and Lorentzian signatures. The procedure can be thought of as a "real Wick rotation". We give a modified action for general relativity, depending on two real parameters, that can be used to control the signature of the solutions to the field equations. We show how this procedure works for the Schwarzschild metric and discuss some possible applications of the formalism in the context of signature change, the problem of time, black hole thermodynamics...Comment: 20 pages uuencoded gzipped tar format. Accepted in Phys. Rev. D. Some references adde

    A Comment on the Degrees of Freedom in the Ashtekar Formulation for 2+1 Gravity

    Full text link
    We show that the recent claim that the 2+1 dimensional Ashtekar formulation for General Relativity has a finite number of physical degrees of freedom is not correct.Comment: 6 pages LaTex, to appear in Classical and Quantum Gravit

    Statistical description of the black hole degeneracy spectrum

    Get PDF
    We use mathematical methods based on generating functions to study the statistical properties of the black hole degeneracy spectrum in loop quantum gravity. In particular we will study the persistence of the observed effective quantization of the entropy as a function of the horizon area. We will show that this quantization disappears as the area increases despite the existence of black hole configurations with a large degeneracy. The methods that we describe here can be adapted to the study of the statistical properties of the black hole degeneracy spectrum for all the existing proposals to define black hole entropy in loop quantum gravity.Comment: 41 pages, 12 figure

    Quantum isolated horizons and black hole entropy

    Full text link
    We give a short introduction to the approaches currently used to describe black holes in loop quantum gravity. We will concentrate on the classical issues related to the modeling of black holes as isolated horizons, give a short discussion of their canonical quantization by using loop quantum gravity techniques, and a description of the combinatorial methods necessary to solve the counting problems involved in the computation of the entropy.Comment: 28 pages in A4 format. Contribution to the Proceedings of the 3rd Quantum Geometry and Quantum Gravity School in Zakopane (2011

    Quantum Geometry and Quantum Gravity

    Get PDF
    The purpose of this contribution is to give an introduction to quantum geometry and loop quantum gravity for a wide audience of both physicists and mathematicians. From a physical point of view the emphasis will be on conceptual issues concerning the relationship of the formalism with other more traditional approaches inspired in the treatment of the fundamental interactions in the standard model. Mathematically I will pay special attention to functional analytic issues, the construction of the relevant Hilbert spaces and the definition and properties of geometric operators: areas and volumes.Comment: To appear in the AIP Conference Proceedings of the XVI International Fall Workshop on Geometry and Physics, Lisbon - Portugal, 5-8 September 200

    Classical and quantum behavior of dynamical systems defined by functions of solvable Hamiltonians

    Get PDF
    We discuss the classical and quantum mechanical evolution of systems described by a Hamiltonian that is a function of a solvable one, both classically and quantum mechanically. The case in which the solvable Hamiltonian corresponds to the harmonic oscillator is emphasized. We show that, in spite of the similarities at the classical level, the quantum evolution is very different. In particular, this difference is important in constructing coherent states, which is impossible in most cases. The class of Hamiltonians we consider is interesting due to its pedagogical value and its applicability to some open research problems in quantum optics and quantum gravity.Comment: Accepted for publication in American Journal of Physic
    corecore