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We use mathematical methods based on generating functions to study the statistical properties of the

black hole degeneracy spectrum in loop quantum gravity. In particular we will study the persistence of the

observed effective quantization of the entropy as a function of the horizon area. We will show that this

quantization disappears as the area increases despite the existence of black hole configurations with a

large degeneracy. The methods that we describe here can be adapted to the study of the statistical

properties of the black hole degeneracy spectrum for all the existing proposals to define black hole entropy

in loop quantum gravity.
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I. INTRODUCTION

The study of black hole (BH) entropy within the frame-
work provided by loop quantum gravity (LQG) is an
interesting issue that illuminates important aspects of
quantum gravity. The modeling of black holes by using
space-times admitting isolated horizons as inner bounda-
ries, and the subsequent quantization of this sector of
general relativity, has been extensively explained in the
literature [1–4]. The resulting description provides a clear
identification of the quantum BH degrees of freedom so
that the standard quantum statistical definition of the en-
tropy can be used.

For small black holes the detailed behavior of the en-
tropy as a function of the horizon area has been explored in
[5–7]. A striking observation made in these papers is the
fact that, in addition to the expected linear growth, the
entropy displays a distinct staircase structure that amounts
to its effective quantization. This is surprising because the
spectrum of the area operator is not equally spaced. A
detailed study of this phenomenon has been undertaken
by resorting to combinatorial methods—in particular the
use of generating functions—and number-theoretic ideas.
These have been described in [7–10].

The so-called black hole degeneracy spectrum is a way
to encode the detailed information about BH configura-
tions and their contributions to the entropy. In effect, the
entropy can be computed as the integral of the black hole
degeneracy distribution [5,10]. When this picture is used,
the results on the entropy quantization manifest themselves
as a distinct peak structure in the degeneracy spectrum (see
Fig. 1). This fact led to the identification in Ref. [8] of a
peak counter—a function of the punctures of the spin
network describing a BH state at the horizon—that effi-
ciently labels the configurations contributing to a given
peak. An alternative way to do this has been given in [10]
as well as a generating function that singles out peak
configurations. The main goal of the present paper is to

use this master generating function to derive some impor-
tant statistical information about the peaks in the degener-
acy spectrum and discuss its physical implications. The
reason why we follow a statistical approach is the fact that
an inspection of the nature of the degeneracy spectrum
shows a combination of a simple coarse-grained structure
and a complicated detailed behavior as can be seen in
Fig. 1.
An important feature of our approach is the use of very

strong results in combinatorics that show a particular type
of convergence to a Gaussian model when certain subsets
of BH configurations are chosen. The obtention of the
relevant statistical parameters, the mean and the variance,
can be efficiently done in terms of the above-mentioned
generating functions. We want to point out that some of the
methods that we will use in the paper are particular appli-
cations of general theorems in combinatorics (see the
excellent book by Flajolet and Sedgewick [11]) suggesting
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FIG. 1 (color online). Plot of the black hole degeneracy spec-
trum DðaÞ, in units of 1019, for a range of area values (in units of
4��‘2P, where � is the Immirzi parameter and ‘P the Planck
length). The band structure can be traced all the way back to the
smaller values of the area.
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that some features in the behavior of the entropy—in
particular its effective quantization for small areas—are
actually of a very generic nature. This is also supported by
the fact that this phenomenon has been seen in all the
different proposals found in the literature and is insensitive
to the implementation of the so-called projection constraint
[10]. We want to mention here that we restrict our analysis
in the main body of the paper to the prescription given by
Domagala and Lewandowski in [12] to compute the en-
tropy. In any case, we will show that our methods can be
easily adapted to deal with the other countings appearing in
the literature, in particular, the SUð2Þ proposal of [3,4] (see
also [13,14]), and our conclusions can be extended to these
cases.

The statistical information that we obtain has a direct
physical application. By smoothing out the peaks in the
degeneracy spectrum (or, rather, the steps in the entropy)
and describing them as Gaussians (or better by Gaussian
distributions, that can be written in terms of the error
function erf) it is possible to obtain a smoothed represen-
tation for the black hole entropy. The low-area behavior,
that has been studied so far in the literature, is captured in a
very effective way by this model. It is possible to show that
the interesting structure of the entropy seen for small black
holes disappears in an area regime for which the smooth
approximation is still valid. However, the preceding analy-
sis does not exclude a revival of the entropy quantization
for larger areas (or in the asymptotic limit) because the
smoothed model fails to reproduce the exact value of the
Immirzi parameter � and, hence, the correct growth rate of
the entropy (although very good approximations for � are
obtained in practice).

The layout of the paper is the following. After this
introduction we will devote Sec. II to give the basic defi-
nitions related to the entropy and the black hole degeneracy
spectrum. In Sec. III we will study the statistical properties
of the peaks by introducing their moment-generating func-
tion. We will obtain the mean and the variance for the peak
distribution and discuss the computation of higher mo-
ments. The approximation obtained by modeling the steps
as Heaviside step functions (with discontinuities located at
the area values given by the mean value of the areas
associated with the peaks) will be discussed next in
Sec. IV. As we will see, the approximation obtained in
this way reproduces the behavior of the entropy for small
areas remarkably well, though it is not suitable to under-
stand the origin of the staircase structure itself. This can be
better done by taking into account not only the mean but
also the variance. We devote Sec. V to this issue. As we
will see, the low-area structure of the entropy can be neatly
understood in this setting. Furthermore, we can also ex-
plain in quantitative terms how this structure disappears
when the area increases.

The basic approach discussed in the first part of the
paper can be improved in several ways. One of them

consists in further partitioning the space of black hole
configurations by introducing extra peak counters. A par-
ticularly simple description can be found by using two of
them. This will allow us to explain, at least in the limit of
small areas, the appearance of discrete substructures in the
peaks of the BH degeneracy spectrum. The details of this
are described in Sec. VI. We also give there a quantitative
comparison of the peak counter found in [8] with other
possible choices and conclude that it is the best one. We
end the paper in Sec. VII with our conclusions and some
details relevant for the extension of our methods to the
SUð2Þ formulation of [3]. A number of technical issues are
left for the appendixes. If not stated otherwise, areas in the
paper will be given in units of 4��‘2P.

II. BLACK HOLE ENTROPY: BASIC DEFINITIONS

As we have mentioned in the introduction, some details
in the entropy behavior as a function of the area are
insensitive to the counting scheme that one chooses to
follow (within the family of LQG inspired models). For
the sake of concreteness most of the computations and
results presented in the paper correspond to the
Domagala-Lewandowski (DL) implementation [12] of
the original proposal of Ashtekar, Baez, Corichi, and
Krasnov [1,2]. However we will briefly discuss at the end
of the paper the relevance of our results for the recent
SUð2Þ proposal of [3,4].
An extended discussion of the number-theoretic and

combinatorial methods that we will employ here can be
found in [10], in particular, the notation and definitions that
we use in the paper. Nonetheless, and for the benefit of the
reader, we give here the basic definitions that will be used.
In the DL approach, the entropy SðaÞ [respectively

S�ðaÞ, when the so-called projection constraint is ignored]
of a quantum horizon of classical area a is given by

SðaÞ ¼ logð1þNðaÞÞ;
ðrespectivelyS�ðaÞ ¼ logð1þN�ðaÞÞÞ;

where NðaÞ (respectively N�ðaÞ) is the number of all the
finite, arbitrarily long, sequences ðm1; . . . ; mNÞ of nonzero
half integers, such that

XN
I¼1

mI ¼ 0; 2
XN
I¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmIjðjmIj þ 1Þ

q
� a

�
respectively 2

XN
I¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmIjðjmIj þ 1Þ

q
� a

�
:

The condition
P

ImI ¼ 0 is known as the projection
constraint. The computation of both SðaÞ and S�ðaÞ can
be efficiently performed in terms of the sets Cða0Þ, a0 � a,
of the allowed configurations for each area a0 ¼P

iqi
ffiffiffiffiffi
pi

p 2 spðâLQGÞ belonging to the spectrum of

the LQG area operator. Here, as pointed out in [7],
qi 2 N [ f0g and pi are the square-free integers (p1 ¼ 2,
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p2 ¼ 3, p3 ¼ 5, p4 ¼ 6, etc.). A configuration c 2 CðaÞ,
as defined in [10], is a (finite) multiset c ¼ fðk; NkÞg
in which each integer k 2 N appears Nk times (with
Nk 2 N [ f0g). The set C of all possible BH configurations
is defined as the union of the configurations corresponding
to the different area values

C :¼ [
a2spðâLQGÞ

CðaÞ:

There are several functions f: C ! R defined on the
space of configurations with a clear physical interpretation
that we will use extensively in the following:

(i) For any configuration c ¼ fðk; NkÞg, NðcÞ ¼ P
kNk

represents the number of punctures defined by a spin
network piercing the horizon, KðcÞ ¼ P

kkNk is

(twice) the total spin, and AðcÞ ¼ P
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

Nk

the area of the BH induced by c. We will use also
some other functions defined on C such as the peak
counter PðcÞ :¼ 3KðcÞ þ 2NðcÞ. These functions
satisfy the bound P=3< A< 2P=5 or, equivalently,
5A=2<P< 3A.

(ii) As explained in [10], the degeneracy dðcÞ of a
configuration c 2 CðaÞ allows us to compute the
number DðaÞ ¼ P

c2CðaÞdðcÞ of arbitrarily long

sequences ðm1; . . . ; mNÞ of nonzero half integers,
such that

XN
I¼1

mI ¼ 0; 2
XN
I¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmIjðjmIj þ 1Þ

q
¼ a:

In terms of the so-called BH degeneracy spectrum
DðaÞ, the BH entropy is given by

expSðaÞ ¼ 1þ X
a0�a

Dða0Þ:

(iii) When the projection constraint is ignored, the
degeneracies d�ðcÞ of a configuration c 2 CðaÞ
give us the number D�ðaÞ ¼ P

c2CðaÞd�ðcÞ of arbi-
trarily long sequences ðm1; . . . ; mNÞ of nonzero half
integers, such that

2
XN
I¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmIjðjmIj þ 1Þ

q
¼ a:

The BH degeneracy spectrum D�ðaÞ in the case
when the projection constraint is not considered
can be used to compute the value of the entropy

expS�ðaÞ ¼ 1þ X
a0�a

D�ða0Þ:

For a given area a ¼ q1
ffiffiffiffiffiffi
p1

p þ q2
ffiffiffiffiffiffi
p2

p þ � � � , the values of
DðaÞ and D�ðaÞ can be encoded in the coefficients of the
generating functions Gðz; x1; x2; . . .Þ and G�ðx1; x2; . . .Þ,

DðaÞ ¼ ½z0�½xq11 xq22 � � ��Gðz; x1; x2; . . .Þ

¼ ½z0�½xq11 xq22 � � ��
�
1�X1

i¼1

X1
n¼1

ðzkin þ z�kinÞxyini
��1

;

D�ðaÞ ¼ ½xq11 xq22 � � ��G�ðx1; x2; . . .Þ

¼ ½xq11 xq22 � � ��
�
1� 2

X1
i¼1

X1
n¼1

xy
i
n

i

��1
:

For each square-free pi, the terms ðzkin þ z�kinÞxyini and xy
i
n

i

appearing in the corresponding generating functions are
built from the solutions fðkin; yinÞgn to the Pell equations
ðkþ 1Þ2 � piy

2 ¼ 1 (see [10] for details). Here
½z0�½xq11 xq22 � � ��Gðz; x1; x2; . . .Þ denotes the coefficient of

the z0xq11 xq22 � � � term in a Laurent expansion of

Gðz; x1; x2; . . .Þ about z ¼ 0, x1 ¼ 0; . . .
It is important to notice that the family fCðaÞ � C: a 2

spðâLQGÞg provides us with a partition of the configuration
space C defined in terms of the level sets of the area
function CðaÞ ¼ A�1ðaÞ. If we are given any other function
P in the configuration space [in particular PðcÞ ¼ 3KðcÞ þ
2NðcÞ] it is possible to define a different partition
C ¼ S

pP p using the level sets P p ¼ P�1ðpÞ. This means

that the sets CpðaÞ ¼ P�1ðpÞ \ A�1ðaÞ define a finer par-

tition than either
S

aCðaÞ or
S

pP p,

C ¼ [
p

[
a

CpðaÞ:

Notice that CðaÞ ¼ S
pCpðaÞ and P p ¼ S

aCpðaÞ. This fact
can be used to compute the entropy as

expSðaÞ ¼ 1þX
p

X
a0�a

Dða0jpÞ;

expS�ðaÞ ¼ 1þX
p

X
a0�a

D�ða0jpÞ;

where

DðajpÞ ¼ X
c2CpðaÞ

dðcÞ; D�ðajpÞ ¼
X

c2CpðaÞ
d�ðcÞ:

This is so because

expSðaÞ ¼ 1þ X
a0�a

Dða0Þ ¼ 1þ X
a0�a

X
c2Cða0Þ

dðcÞ

¼ 1þ X
a0�a

X
p

X
c2Cpða0Þ

dðcÞ

¼ 1þX
p

X
a0�a

X
c2Cpða0Þ

dðcÞ ¼ 1þX
p

X
a0�a

Dða0jpÞ

(2.1)

and equivalently for expS�ðaÞ. Finally, it is important to
notice that, when the partition is defined by the functions of
the type Pð�;�Þ :¼ �K þ �N (a generalized ‘‘linear’’
counter with positive integer coefficients), the numbers
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DðajpÞ and D�ðajpÞ associated with an area a ¼
q1

ffiffiffiffiffiffi
p1

p þ q2
ffiffiffiffiffiffi
p2

p þ � � � can be derived as

DðajpÞ ¼ ½z0�½xq11 xq22 � � ��½�p�Gð�; z; x1; x2; . . .Þ;
D�ðajpÞ ¼ ½xq11 xq22 � � ��½�p�Gð�; x1; x2; . . .Þ;
from the master BH generating functions

Gð�;z;x1; x2; . . .Þ :¼
�
1�X1

i¼1

X1
n¼1

ðzkin þ z�kinÞ��kinþ�xy
i
n

i

��1
;

(2.2)

G�ð�; x1; x2; . . .Þ :¼
�
1� 2

X1
i¼1

X1
n¼1

��kinþ�xy
i
n
i

��1
: (2.3)

Notice that these generating functions are normalized in
such a way that Dð0Þ ¼ Dð0j0Þ ¼ D�ð0Þ ¼ D�ð0j0Þ ¼ 1,
and Dð0jpÞ ¼ D�ð0jpÞ ¼ 0 for p � 0.

III. STATISTICAL PROPERTIES OF THE PEAKS

The starting point of our analysis is to introduce a
convenient partition of the space of black hole configura-
tions that is adapted to the description of the peak structure
seen in Fig. 1 for the BH degeneracy spectrum (or, alter-
natively, to the steps of the entropy). This partition is
performed by introducing the peak counter P ¼
3K þ 2N defined above. A peak in the space of BH con-
figurations P p � C is defined as consisting of those

configurations c corresponding to a preselected value p
of PðcÞ. We have then

C ¼ [
p

P p ¼ [
p

[
a

CpðaÞ:

For a fixed value of p there are, of course, configurations
corresponding to different values of the area (within a
bounded range P=3< A< 2P=5) and different degenera-
cies dðcÞ [or d�ðcÞ]; this is so because P p ¼ S

aCpðaÞ. In
fact, if one plots DðajpÞ ¼ P

c2CpðaÞdðcÞ or D�ðajpÞ ¼P
c2CpðaÞd�ðcÞ as a function of a (for a fixed value of p)

one gets a regular structure with the form of peak in the
black hole degeneracy, as shown in Fig. 2. It is obviously
possible to reconstruct the degeneracy spectra that have
already appeared in the literature [10] by adding up the
contributions of these peaks for all the values of p.

The regular shape seen in Fig. 2 strongly suggests that a
Gaussian approximation can provide a good description of
the peaks. This fact leads naturally to the consideration of
statistical methods to study BH entropy. In fact, this is the
main theme of this paper. We want to emphasize from the
start that we do not merely compute statistical parameters
(the mean, the variance, and eventually higher moments)
by fitting Gaussian profiles to the peak data but, rather,
obtain them exactly from the BH generating functions. In

other words, we will not just use descriptive statistics, but
employ the very powerful analytical tools available for a
wide class of combinatorial problems (involving generat-
ing functions of the same type as the ones that we use in
this paper [11]). This will allow us to make predictions
regarding the statistical parameters of arbitrary peaks and
use them to study the behavior of the BH entropy.
A statistical treatment requires us to give a weight to

each configuration. In our problem this is naturally pro-
vided by the degeneracy dðcÞ—or, respectively, d�ðcÞ. The
relevant objects to be computed are the expectation values
of the powers of the area (taken as a random variable)
conditioned by a fixed value of p,

E½Anjp� :¼
P

c2P p
dðcÞAnðcÞP

c2P p
dðcÞ ;

E�½Anjp� :¼
P

c2P p
d�ðcÞAnðcÞP

c2P p
d�ðcÞ :

(3.1)

In the first case (where the projection constraint is taken
into account) only even values of p have be considered
because

P
c2P p

dðcÞ is otherwise zero. As we will explain

later, we will use the relevant moments defined by this
formula to build a smooth approximation for the shape of
each step in the entropy. This will require us to ‘‘denorm-
alize’’ the distribution by multiplying it by the total peak
degeneracy

P
c2P p

dðcÞ [orPc2P p
d�ðcÞ]. The standard way

to compute E½Anjp� and E�½Anjp� relies on the use of the
so-called moment-generating function associated with the
random variable A. A remarkable feature of the combina-
torial approach that we follow to study black hole entropy
in LQG is the fact that this moment-generating function
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FIG. 2 (color online). Peak corresponding to p ¼ 150 in units
of 1014. By plotting the values of D�ðajpÞ one gets, for the
largest degeneracy values, a roughly symmetric shape. The
values corresponding to the largest degeneracies can be readily
seen in the plot. Notice, however, that the peak extends to the left
much farther than it does to the right. This phenomenon can be
easily seen in a plot of the logarithm of D�ðajpÞ that also
displays a distinct subpeak structure to be discussed later (see
Fig. 10).
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can be easily derived from the master generating functions
(2.2) or (2.3) given above. We will start by looking at the
case where the projection constraint is ignored. The incor-
poration of the projection constraint will be discussed
afterward. Though this problem is more complicated, there
are no important conceptual differences as far as our treat-
ment is concerned.

A. Moment-generating function: Ignoring
the projection constraint

Let us take as the starting point the master generating
function G�ð�; x1; . . . ; Þ, defined in (2.3), where the vari-
able xi refers to the square-free integer pi. By substituting
xi ¼ e�s

ffiffiffiffi
pi

p
, as is standard in this setting [10], we obtain

G�ð�; sÞ :¼ G�ð�; e�s
ffiffiffiffi
p1

p
; e�s

ffiffiffiffi
p2

p
; . . .Þ

¼ 1

1� 2
P1

k¼1 �
3kþ2e�s

ffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þ

p : (3.2)

By construction, it is obvious [10] that

½�p�G�ð�; sÞ ¼
X

c2P p

d�ðcÞe�sAðcÞ

and, hence,

E�½expð�sAÞjp� ¼ ½�p�G�ð�; sÞ
½�p�G�ð�; 0Þ : (3.3)

Modulo normalizing factors, and the exchange s � �s,
the function gðsjpÞ :¼ ½�p�G�ð�; sÞ is the standard
moment-generating function used in mathematical statis-
tics and, hence, loggðsjpÞ is the cumulant-generating func-
tion used in statistical physics. Notice that our sign
convention originates in the use of Laplace transforms to
write down closed expressions for the black hole entropy
[15,16]. By computing the derivatives of (3.2) with respect
to s at s ¼ 0 we can easily find all the expectation values
for arbitrary powers of the area,

E�½Anjp� ¼ ð�1Þn ½�
p�ð @n@sn js¼0G�ð�; sÞÞ
½�p�G�ð�; 0Þ :

In particular, the mean and the variance

��p ¼ E�½Ajp�; �2�p ¼ E�½A2jp� � E2�½Ajp�
of the area distribution conditioned by P ¼ p can be
obtained in a straightforward way. Exact expressions (as
closed functions of p) for ��p,�2�p, and the normalization

factor

��p :¼ ½�p�G�ð�; 0Þ ¼
X

c2P p

d�ðcÞ

can be found in Appendix A. In the asymptotic regime
p ! 1 these objects follow very simple laws:

��p � 2�2
0

ð10�2
0 þ 3Þ

1

�p
0

; (3.4)

��p �� � p ¼ ð0:34959022 � � �Þ � p; (3.5)

�2�p � �2 � p ¼ ð0:00009817 � � �Þ � p; (3.6)

where �0 ¼ ð0:77039825 � � �Þ will denote the single real
root the polynomial 2�5 þ �3 � 1. A closed expression for
�0 in terms of hypergeometric functions is given in [10]
(we will discuss some details concerning this issue in
Sec. VI). As we show in Appendix A, the coefficients �
and �2 appearing in (3.5) and (3.6) can be written in terms
of �0. The linear growth of the variance and the fact that the
spacing between successive steps tends to a constant value
strongly suggests that the steps will fade as the area in-
creases. This will be shown in detail in Sec. V.
We want to mention here that the leading behavior of

��p � ð0:34959022 � � �Þ � p exactly coincides with the one

obtained in [10] by using a completely different approach
relying on a continuum approximation. We will provide an
alternative proof of these asymptotic results in Sec. V.

B. Moment-generating function: The
Domagala-Lewandowski approach

When the projection constraint is considered, the start-
ing point is the master generating function Gð�; z; x1; . . . ; Þ
defined in (2.2). By substituting xi ¼ e�s

ffiffiffiffi
pi

p
we obtain

Gð�; s; zÞ :¼ Gð�; z; e�s
ffiffiffiffi
p1

p
; e�s

ffiffiffiffi
p2

p
; . . .Þ

¼ 1

1�P1
k¼1 �

3kþ2ðzk þ z�kÞe�s
ffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þ

p : (3.7)

The function Gð�; s; zÞ satisfies
½z0�½�p�Gð�; s; zÞ ¼ X

c2P p

dðcÞe�sAðcÞ

and, hence, we have the following expression for the
expectation value:

E½expð�sAÞjp� ¼ ½z0�½�p�Gð�; s; zÞ
½z0�½�p�Gð�; 0; zÞ : (3.8)

By computing the derivatives of (3.7) with respect to s, at
s ¼ 0, we can easily find all the expectation values for
arbitrary powers of the area

E½Anjp� ¼ ð�1Þn ½z
0�½�p�ð @n@sn js¼0Gð�; s; zÞÞ
½z0�½�p�Gð�; 0; zÞ :

In this case, the mean and the variance

�p ¼ E½Ajp�; �2
p ¼ E½A2jp� � E2½Ajp�

of the area distribution conditioned by P ¼ p can be
obtained with some extra work due to the presence of the
z-variable in Gð�; s; zÞ. Expressions for �p, �

2
p, and the

normalization factor
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�p :¼ ½z0�½�p�Gð�; 0; zÞ ¼ X
c2P p

dðcÞ

can be found in Appendix B. In particular, it is possible to
prove that �p ¼ 0 for all odd values of p and hence only

the even values of PðcÞ ¼ p have to be considered. In this
case, in the asymptotic regime p ¼ 2q ! 1 we have

�2q � 1

1þ �2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut 1ffiffiffi
q

p
�2q
0

; (3.9)

�2q � 2� � q ¼ 2 � ð0:34959022 � � �Þ � q; (3.10)

�2
2q � 2�2 � q ¼ 2 � ð0:00009817 � � �Þ � q: (3.11)

The statistical treatment given in this section suggests
two approximate models for the behavior of the black hole
entropy as a function of the horizon area. In the first one the
steps in the entropy are approximated by Heaviside step
functions with jumps of magnitude �p (or, respectively,

��p when the projection constraint is ignored) located at

areas given by the mean values �p. The second, improved,

model will use smoothed steps given by the (integrated)
Gaussian distributions of mean �p and variance �2

p with

height �p. We discuss them in the following sections.

IV. USING THE MEAN: THE STAIRCASE
APPROXIMATION FOR THE ENTROPY

A coarse approximation for the exponentiated entropy
expS�ðaÞ and expSðaÞ can be obtained by assigning the
sum of all the degeneracies corresponding to each peak to a
single step located at the mean area value. This can be done
by employing Heaviside step functions (denoted by � in
the following) in several slightly different ways (obtained
by using the asymptotic approximations for ��p, �p, ��p,
and �p),

X1
p¼0

��p�ða���pÞ;

X1
p¼0

��p�ða��pÞ;

1þ 2�2
0

ð10�2
0 þ 3Þ

X1
p¼5

1

�p
0

�ða��pÞ;

X1
p¼0

�p�ða��pÞ;

X1
p¼0

�p�ða��pÞ;

1þ 1

1þ �2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut X1
peven

1ffiffiffiffi
p

p
�p
0

�ða��pÞ;

where the first three formulas correspond to the case
without the projection constraint. The validity of these
approximations for small areas is clearly seen in Fig. 3.
By proceeding in this way the entropy will obviously

display a staircase structure because we are approximating
it as a sum of sharp, (asymptotically) equally spaced, steps.
This means that this simplified approach will not be suit-
able to address the persistence (or lack thereof) of the
structure seen in the entropy for small areas in the asymp-
totic regime. However, it can be used to estimate the value
of the Immirzi parameter as � � �stairs because it provides
a simple expression for the growth of the entropy as a
function of the area. In fact, in the case where the projec-
tion constraint is neglected, we easily find

��stairs :¼ � log�0

�
¼ ð0:74615268 � � �Þ: (4.1)

This value must be compared with the one obtained by
Meissner in [15]

�� ¼ ð0:74623179 � � �Þ: (4.2)

FIG. 3 (color online). The upper part of the figure shows the
exact value of the entropy S�ðaÞ for areas below 18 (in units of
4��‘2P) in the case in which the projection constraint is ignored.
The lower part represents the staircase approximation to the
entropy given by Sstairs� ðaÞ ¼ logðP1

p¼0 ��p�ða�� � pÞÞ.
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Notice that �stairs has nothing to do with the value of the
Immirzi parameter ��flux ¼ log3 derived in the context of
LQG from the evenly spaced flux area operator used in [17]
which can be interpreted in terms of the Schwarzschild
quasinormal modes [17,18]. Though one could argue that
the value �stairs derived for the Immirzi parameter in this
approximation is quite good, the fact that it predicts a
growing behavior, different from the true one, means that
the entropy and its staircase approximation will diverge
linearly.

A convenient way to derive (4.1) is by using Laplace
transform techniques. Let us discuss, in the first place, the
staircase approximation without the projection constraint.
To this end we consider

expSstairs� ðaÞ :¼ 1þ 2�2
0

ð10�2
0 þ 3Þ

X1
p¼5

1

�p
0

�ða��pÞ;

whose Laplace transform LðexpSstairs� ; sÞ can be computed
in closed form (as a function of the complex variable s),

L ðexpSstairs� ; sÞ ¼ 1

s
þ 2�2

0

ð10�2
0 þ 3Þs

X1
p¼5

e��ps

�p
0

¼ 1

s
þ 2

ð10�2
0 þ 3Þ�2

0

e�4�s

ð�0e
�s � 1Þs :

The pole sstairs ¼ � logð�0Þ=� is responsible for the
exponential growth of expSstairs� ðaÞ, in the regime a ! 1,
given by (4.1). Notice that, in addition to this real pole
(and s ¼ 0), there are infinitely many others of the form
� logð�0Þ=�þ 2k�i=�, k 2 Z n f0g that account for the
steps in this approximation for the entropy [16].

When the projection constraint is taken into account the
configurations c with odd values of PðcÞ ¼ p have zero
degeneracy and hence only even values of p ¼ 2q have to
be considered. The staircase approximation is then

expSstairsðaÞ :¼ 1þ 1

1þ �2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut
	 X1

q¼1

1ffiffiffiffiffiffi
2q

p
�2q
0

�ða� 2�qÞ:

The Laplace transform LðexpSstairs; sÞ is given by

L ðexpSstairs; sÞ ¼ 1

s
þ 1

1þ �2
0

	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut Li1=2ðe�2ð�sþlog�0ÞÞ;

where Li1=2 denotes the polylogarithm of order 1=2. The

singularities of Li1=2ðe�2ð�sþlog�0ÞÞ are branch cuts starting

at the same straight line ReðsÞ ¼ sstairs in the complex
s-plane as the singularities found for the case without the
projection constraint: � logð�0Þ=�þ k�i=�, k 2 Z.

Notice that the spacing between these points is half the
one obtained when the projection constraint is ignored.
This means that the width of the steps doubles in this
case. The effect of the branch cuts is to modify the asymp-
totic behavior of the entropy by the addition of the ex-
pected logarithmic corrections, however, the linear growth
is the same as before and the inferred value of the Immirzi
parameter is still given by (4.1).
The failure to reproduce the exact value for the Immirzi

parameter in this approximation stems from the fact that,
for a given value of the area a, the model neglects to take
into account contributions coming from peaks with p
beyond the largest one satisfying �p � a. It also misses
some contributions coming from lower values of p (at least
in the asymptotic regime of large areas).

V. USING THE MEAN AND THE VARIANCE:
SMOOTHED GAUSSIAN APPROXIMATION

FOR THE ENTROPY

An improved model for the black hole entropy can be
obtained by approximating the steps by Gaussian distribu-
tions with mean and variance given by (3.5) and (3.6). This
will take into account the fact that the steps become wider
with increasing values of p (an effect that can be readily
seen by plotting the exact values of the entropy for small
black holes as functions of the area). This is obviously
relevant to study whether the staircase structure is present
in the asymptotic limit. At this point it is just appropriate to
quote the book by Flajolet and Sedgewick [11]
‘‘Many applications, in various sciences as well as in

combinatorics itself, require quantifying the behavior of
parameters of combinatorial structures. The corresponding
problems are now of a multivariate nature, as one typically
wants a way to estimate the number of objects in a com-
binatorial class having a fixed size and a given parameter
value. Average-case analyses usually do not suffice, since
it is often important to predict what is likely to be observed
in simulations or on actual data that obey a given random-
ness model, in terms of possible deviations from the
mean—this signifies that information on probability dis-
tributions is wanted.. . . Indeed, it is frequently observed
that the histograms of the distribution of a combinatorial
parameter (for varying size values) exhibit a common
characteristic ‘‘shape,’’ as the size of the random combi-
natorial structure tends to infinity. In this case, we say that
there exists a limit law.’’
In our case we have a multivariate combinatorial prob-

lem where both the area and the peak parameter P play a
significant role. Furthermore, we have that the distribution
of one of the parameters (the area of the peaks) displays a
characteristic shape as the peak counter grows toward
infinity. As we will show in this section the methods
appearing in [11] will allow us to gather important infor-
mation about the behavior of the entropy as a function
of the area. In particular, we will see that a Gaussian
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law—reminiscent of the central limit theorem of probabil-
ity theory—plays an important role in the analysis pre-
sented here.

A. Gaussian law for the peaks

The key idea—in the case where the projection con-
straint is neglected1—is to use theorem IX.9 of [11] for the
generating function G�ð�; sÞ given in (3.2). The theorem
tells us that the mean and the variance for P ¼ p can be
easily obtained in terms of the ‘‘analytic’’ mean2 mðf�Þ
and variance vðf�Þ of a function f� as

��p ¼ mðf�ÞpþOð1Þ ¼ � f0�ð0Þ
f�ð0Þ � pþOð1Þ; (5.1)

�2�p ¼ vðf�ÞpþOð1Þ ¼
�
f00� ð0Þ
f�ð0Þ �

�
f0�ð0Þ
f�ð0Þ

�
2
�
pþOð1Þ:

(5.2)

The function

f�ðsÞ :¼ ��ð0Þ
��ðsÞ ; f�ð0Þ ¼ 1

is given in terms of ��ðsÞ defined by ��ð0Þ ¼ �0 and
Q�ð��ðsÞ; sÞ ¼ 0, where

Q�ð�; sÞ :¼ 1

G�ð�; sÞ

¼ 1� 2
X1
k¼1

�3kþ2 expð�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þ

p
Þ:

The implicit function theorem allows us to obtain a power
series expansion in terms of the variable swith coefficients
given by derivatives of Q�ð�; sÞ evaluated at � ¼ �0 and
s ¼ 0. Explicitly

��ðsÞ ¼ �0 � q�0;1
q�1;0

s

� q2�1;0q�0;2 � 2q�1;0q�1;1q�0;1 þ q�2;0q2�0;1
2q3�1;0

s2

þOðs3Þ
with

q�i;j :¼ @iþjQ�
@�i@sj

��������ð�0;0Þ
:

The results given by (5.1) and (5.2) are exactly the same
that we have found above in Eqs. (3.5) and (3.6). In
any case this is a very efficient method to compute the

numerical values of the mean and the variance of the peak
distributions. The theorem, however, provides us with
another very important convergence result: The random
variable

Xp :¼ Ap ���p
��p

with (normalized) distribution function

F�pðxÞ ¼ Prob�ðXp � xÞ ¼
P

c2P p\X�1
p ðð�1;x�Þ d�ðcÞP

c2P p
d�ðcÞ

¼
P

x0�x

P
c2P p\X�1

p ðx0Þ d�ðcÞ
��p

converges, pointwise, to a Gaussian distribution

lim
p!1F�pðxÞ ¼ 1

2

�
1þ erf

�
xffiffiffi
2

p
��

:¼ 1

2

�
1þ 2ffiffiffiffi

�
p

Z x=
ffiffi
2

p

0
e�t2dt

�
;

with aOð1= ffiffiffiffi
p

p Þ speed of convergence. In terms of the area

this fact implies that we can writeX
a0�a

D�ða0jpÞ ¼
X
a0�a

X
c2Cpða0Þ

d�ðcÞ ¼
X

c2P p\A�1
p ð0;a�

d�ðcÞ

¼ ��pF�p
�
a���p
��p

�
:

In practice this tells us that each smoothed step, given by
the function

a �
��p
2

�
1þ erf

�
a���pffiffiffi

2
p

��p

��
;

is a good approximation (see Fig. 4) to the actual shape of
the graph of the function

a �
X
a0�a

D�ða0jpÞ

appearing in the definition of the entropy (2.1). This
approximation improves as p grows.
If one compares, instead, the graphs of the functions

a �
��pffiffiffiffiffiffiffi
2�

p
��p

exp

�
�ða���pÞ2

2�2�p

�
and a � D�ðajpÞ;

corresponding to the peaks in the degeneracy spectrum, the
Gaussian shape does not correspond in any way to an
‘‘envelope’’ of the actual peak defined by the degeneracies
(see Fig. 1), although the maxima appear roughly for the
same value of the area and the widths match reasonably.
We want to point out that the parameters of the Gaussian
approximation have been obtained a priori from the
moment-generating function. So we are not fitting
the ‘‘peak data’’ to a Gaussian but, rather, deriving the

1The case when the projection constraint is taken into account
can be handled by adapting theorem IX.12 of [11].

2Notice that the minus sign in our definition of mðf�Þ origi-
nates in our sign convention for the variable s appearing in our
moment-generating functions.
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statistical properties of the distribution that they define by
relying on an exact statistical analysis.

B. Gaussian approximation for the entropy

The idea now is to model the entropy as a sum of
smoothed steps like the ones shown in Fig. 4. However, it
is very important to be aware of the fact that the conver-
gence of the individual steps to their Gaussian approxima-
tions does not guarantee the convergence of their sum to
the actual value of the entropy. Let us consider then ap-
proximations for the exponentiated entropy expS�ðaÞ and
expSðaÞ obtained by adding Gaussian steps. In the case
where the projection constraint is ignored these are

1þ X1
p¼1

��p
2

�
1þ erf

�
a���pffiffiffi

2
p

��p

��
;

1þ X1
p¼1

��p
2

�
1þ erf

�
a��pffiffiffiffiffiffi

2p
p

�

��
;

1þ �2
0

ð10�2
0 þ 3Þ

X1
p¼5

1

�p
0

�
1þ erf

�
a��pffiffiffiffiffiffi

2p
p

�

��
:

Similar expressions (to be discussed later) hold for the case
in which the projection constraint is incorporated.
Figures 5 and 6 show a comparison between these approx-
imations and the actual value of the entropy for the small-
est areas. As can be seen, the agreement is excellent. Not
only the height of the steps is reproduced with high fidelity
but also their progressive smoothing. In the case when the
projection constraint is taken into account the staircase
structure is more evident.

In spite of this remarkable agreement we know, as we
have learned in the preceding section, that the asymptotic
growth of the Gaussian approximation may not be the
exact one (i.e. the value of �gauss derived here may differ

from the true one). In fact, this will be shown to be the case.
In order to study the asymptotic growth of the Gaussian
approximation to the entropy it suffices to consider

expSgauss� ðaÞ :¼ 1þ �2
0

ð10�2
0 þ 3Þ

X1
p¼5

1

�p
0

�
1þ erf

�
a��pffiffiffiffiffiffi
2p

p
�

��
;

and study the singularity structure of its Laplace transform
written in terms of the complex variable s. This is given by

LðexpSgauss� ; sÞ

¼ 1

s
þ �2

0

ð10�2
0 þ 3Þs

X1
p¼5

1

�p
0

�
1� erf

�
�ffiffiffi
2

p
�

ffiffiffiffi
p

p ��

þ �2
0

ð10�2
0 þ 3Þs

X1
p¼5

1

�p
0

�
1þ erf

�
�2s��ffiffiffi

2
p

�

ffiffiffiffi
p

p ��

	 exp

��
�2

2
s2 ��s

�
p

�
: (5.3)

Notice that despite the fact that the Laplace transforms of
the individual steps are entire functions in the complex

41.6 41.8 42.0 42.2 42.4

1 1012

2 1012

3 1012

4 1012

5 1012

FIG. 4 (color online). Comparison between the exact shape of
the step

P
a0�aD�ða0j120Þ and the corresponding smoothed

Gaussian approximation ��120
2 ð1þ erfða���120ffiffi

2
p

��120
ÞÞ. The vertical

band is centered around the value ��120 and has a width of
2��120.

FIG. 5 (color online). The upper part of the figure shows the
exact value of the entropy S�ðaÞ for areas below 18 (in units of
4��‘2P) in the case in which the projection constraint is ignored.
The lower part represents the Gaussian approximation
S
gauss
� ðaÞ ¼ logð1þP1

p¼1
��p
2 ð1þ erfða��pffiffiffiffi

2p
p

�
ÞÞÞ.
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variable s, the analytic extension of their sum (restricted to
the values of s for which it actually converges) may, and
actually will, have singularities. By looking at the inver-
sion formula for Laplace transforms it is easy to see that
these singularities determine the asymptotic behavior of
the original sum. This is discussed in detail in Appendix C.
The first two terms in (5.3) have a very simple analytic
structure because they just have a pole at s ¼ 0. The
second sum in (5.3) is more complicated and may converge
or diverge depending on the values of s. It is easy to see that
it converges for all s 2 C such that j argðsÞj � 3�=4 (the
range of the argument is taken to be argðsÞ 2 ð��;��).
Inside the wedge j argðsÞj> 3�=4 the series converges for
values of s to the right of the hyperbola (see Fig. 11 in
Appendix C)

Re

�
�2

2
s2 ��s� log�0

�
¼ 0: (5.4)

This divergence (in the region j argðsÞj> 3�=4) is due to a
term of the form

2�2
0

ð10�2
0 þ 3Þs

X1
p¼5

1

�p
0

exp

��
�2

2
s2 ��s

�
p

�
: (5.5)

This means that by subtracting this expression from the
series that we are looking at, we get another series that
converges in the full wedge j argðsÞj> 3�=4 to a function
hðsÞ (with no singularities). The sum (5.5) can actually be
performed in closed form to get a meromorphic extension
to j argðsÞj> 3�=4 of the function that it defines inside its
region of convergence. This is given by

2 expð5�2

2 s2 � 5�sÞ
�3
0ð10�2

0 þ 3Þð1� expð�2

2 s2 ��s� log�0ÞÞs
: (5.6)

The analytic extension of the Laplace transform (5.3) to the
wedge is then given by the sum of the first two terms in
(5.3), the function hðsÞ, and (5.6). Hence the singularities of
the Laplace transform (5.3) are s ¼ 0 and those of (5.6).
These are isolated simple poles located on the hyperbola
(5.4) defined above (see Fig. 11) and given by the condition

�2

2
s2 ��s� log�0 ¼ 2k�i; k 2 Z:

The single real pole at

sgauss ¼ �

�2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

�2
log�0

s 1
A

dictates the asymptotic growth of the entropy in this
Gaussian approximation and gives an improved estimate
of the Immirzi parameter

��gauss ¼ sgauss ¼ ð0:74623087 � � �Þ (5.7)

to be compared with the actual value ��¼
ð0:74623179���Þ. As it can be seen, the value of �gauss is

better than �stairs obtained in the preceding section by using
the staircase approximation but still not the true one �, as
they differ starting at the sixth decimal figure.
The decay of the staircase structure is dictated by the

two poles with the smallest nonzero imaginary parts. These
are given by

s�
 :¼ �

�2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

�2
ðlog�0 
 2�iÞ

s 1
A

¼ ð0:70084660 � � �Þ � ð17:97653845 � � �Þi:
The magnitude of the imaginary part in the previous

expression is very close to 2�=� ¼ ð17:97300040 � � �Þ as
expected. Finally the comparison between sgauss and the

real part of s�
 tells us the decay rate of the staircase
structure of the entropy. This is given, essentially, by

expð�ðsgauss � Reðs�
ÞÞaÞ ¼ expð�ð0:04538426 � � �ÞaÞ;
(5.8)

FIG. 6 (color online). The upper part of the figure shows the
exact value of the entropy SðaÞ for areas below 18 (in units of
4��‘2P) in the case in which the projection constraint is taken
into account. The lower part represents the Gaussian approxi-
mation SgaussðaÞ ¼ logð1þP1

p¼1
�p

2 ð1þ erfða��pffiffiffiffi
2p

p
�
ÞÞÞ. The stair-

case structure decays more slowly now as discussed in the text.
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which means that the steps should have faded significantly
for areas with an order of magnitude given by
1=ð0:04538426 � � �Þ � 25. We show in Fig. 7 the exact
behavior of the entropy for two different area intervals,
in the case when the projection constraint is ignored, and
also the corresponding Gaussian approximations. Both the
accuracy of the Gaussian approximation in this regime and
the decay of the staircase structure (essentially absent for
areas around 50) can be readily seen. Another interesting
feature that can be seen in Fig. 7 is the fact that as the
density of the area spectrum increases, the jumps in the
values of the entropy for consecutive area eigenvalues
become smaller and smaller. Hence the entropy is better
and better described by a smooth curve (in fact a straight
line). It should be pointed out that the BH degeneracy
spectrum at this regime still shows a distinct peak structure
produced by configurations of very large degeneracy that,
however, give an almost negligible contribution to the total
degeneracy of the individual peaks for large areas. When
the projection constraint is taken into account the Gaussian
approximation is

expSgaussðaÞ :¼ 1þ 1

2ð1þ �2
0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut X1
q¼1

1ffiffiffi
q

p
�2q
0

	
�
1þ erf

�
a� 2�q

2
ffiffiffi
q

p
�

��
;

and the singularities of its Laplace transform—that again
control the asymptotic behavior of the entropy—are en-
coded in the series

X1
q¼1

1ffiffiffi
q

p
�2q
0

exp

�
2

�
�2

2
s2 ��s

�
q

�

¼ Li1=2ðexpð�2s2 � 2�s� 2 log�0ÞÞ

that plays the same role as (5.5) when the projection
constraint was ignored. The singularities satisfy now

�2

2
s2 ��s� log�0 ¼ k�i; k 2 Z:

The single real branch point is located at sgauss, which is

precisely the place where the real pole in the case without
the projection constraint is placed. The change of the
singularity nature (branch points instead of poles) means
that the asymptotic behavior of the entropy in the Gaussian
approximation (with the projection constraint) will acquire
the expected logarithmic corrections. The decay of the
staircase structure is controlled by the two singularities
with the smallest nonzero imaginary parts. These are
given by

s
 :¼ �

�2

0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2

�2
ðlog�0 
 �iÞ

s 1
A

¼ ð0:73488453 � � �Þ � ð8:98835516 � � �Þi:

Two important points must be mentioned now. First we
notice that the real part of these singularities is much closer
to sgauss than in the case without the projection constraint.

The decay rate of the staircase structure is controlled
now by

expð�ðsgauss � Reðs
ÞÞaÞ ¼ expð�ð0:01134633 � � �ÞaÞ:
(5.9)

This means that the staircase structure of the entropy will
be perceptible for areas roughly 4 times as large as those
corresponding to the nonprojection constraint case. Hence,
similar results to those shown in Fig. 7 are obtained with
the projection constraint for areas around 200 in our units.
Finally, the imaginary part of the singularities—that con-
trols the width of the steps—is essentially half the value
that it was when the projection constraint was ignored and
hence the steps are twice as wide.

FIG. 7 (color online). Comparison between the exact values of
the entropy S� and their Gaussian approximation for two differ-
ent area intervals. The necessary computations are made possible
by the introduction of the master generating functions (2.3). We
can see that the Gaussian approximation works remarkably well
in both cases. The fading of the oscillations in the entropy for the
largest area interval is evident. Similar plots for area intervals
around 70 show an essentially linear growth.
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VI. OTHER PARTITIONS

An interesting question that naturally arises concerns the
comparison of the results obtained with the peak counter
P ¼ 3K þ 2N that we have used throughout the paper with
the ones obtained with other partitions defined by linear
counters of the type

Pð�;�Þ :¼ �K þ �N; �;� 2 N:

An important point that we want to emphasize here is the
fact that all these counters provide partitions of the space of
black hole configurations, and hence the full black hole
spectrum can be recovered by using any of them (and
taking into account all its possible values). However,
some of them may be better suited to understand or isolate
specific features of the spectrum (such us the observed
bands for low areas).

By reasoning as in [8], and relying on the solutions to the
Pell equation, it is actually possible to find other counters,
such as Pð5; 4Þ ¼ 5K þ 4N or Pð7; 5Þ ¼ 7K þ 5N, that
could be potentially useful to understand the degeneracy
spectrum. In particular, we have seen that Pð3; 2Þ works
very well for small areas but leads to a Gaussian approxi-
mation that underestimates the value of the Immirzi pa-
rameter. It is then natural to wonder if a better counter
could exist that provides a better estimate for � and still
explains the low-area behavior of the entropy. Even if the
low-area behavior is not captured by such a counter it could
be used to understand the asymptotic limit of large areas. In
this section we compare the Pð3; 2Þ counter with Pð�;�Þ
and show that our original choice is the best one. This does
not mean that these other counters are not useful them-
selves. In fact, we will show that they can also be used to
refine the partition provided by Pð3; 2Þ and to study the

interesting substructure of the peaks defined with the help
of Pð3; 2Þ.

A. Assessing the ‘‘goodness’’ of Pð3; 2Þ ¼ 3Kþ 2N

The level sets P pð�;�Þ ¼ Pð�;�Þ�1ðpÞ of the function
Pð�;�Þ ¼ �K þ �N lead to the partition C ¼S

pP pð�;�Þ of the configuration space. It is important to

point out that the partitions defined by Pðn�; n�Þ are
equivalent to the partition defined by Pð�;�Þ for any
positive integer n. This means that we can consider only
values of � and � that are coprime, i.e. such that
gcdð�;�Þ ¼ 1.
By proceeding as in previous sections we arrive at the

following peak generating function3

G�ð�; s;�;�Þ :¼ 1

1� 2
P1

k¼1 �
�kþ�e�s

ffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þ

p : (6.1)

The mean and variance of the area distribution conditioned
by Pð�;�Þ ¼ p can be easily derived from this generating
function and have an asymptotic behavior given by

�pð�;�Þ ��ð�;�Þ � p; �2
pð�;�Þ � �2ð�;�Þ � p;

where the coefficients�ð�;�Þ and�2ð�;�Þ can be written
now in terms of the real root �0ð�;�Þ of the polynomial
2��þ� þ �� � 1. For example, by following [11], it is
possible to write

�ð�;�Þ ¼ 4��þ2�
0 ð�;�Þ

2���þ�
0 ð�;�Þ þ �

X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

��k
0 ð�;�Þ

and

�2ð�;�Þ ¼ ð1� ��
0 Þ3ð�2ð��

0 þ 1Þ þ �2ð��
0 � 1Þ2 � 2��ð��

0 � 1ÞÞ
�2ð�þ�Þ
0 ð�þ �� ���

0 Þ3
�X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

��kþ�
0

�
2

� 2ð1� ��
0 Þ4

�2ð�þ�Þ
0 ð�þ �� ���

0 Þ2
�X1
k¼1

ð�kþ �Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

��kþ�
0

��X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

��kþ�
0

�

þ ��
0 � 3

ð��
0 � 1Þð�þ �� ���

0 Þ
;

where �0 ¼ �0ð�;�Þ. The root �0ð�;�Þ can be obtained as
the value at x ¼ 1 of a suitable analytic extension of the
function defined within its convergence disk by the Taylor
series

X1
n¼0

2n

�nþ 1

�ð�nþ 1Þ��1

n

� �
x�nþ1

¼ X1
n¼0

ð�2Þn
�nþ 1

ðð�þ �Þnþ 1� �Þ��1

n

� �
x�nþ1:

These extensions are finite sums of hypergeometric
functions.
The values of Pð�;�Þ are always positive integers. It is

easy to show (see below) that there is always a minimum
integer number pminð�;�Þ such that the spacing between
consecutive allowed values of Pð�;�Þ is gcdð�;�Þ. Taking

3For the sake of simplicity, we will work without the projec-
tion constraint here because the leading terms for the mean and
the variance are not sensitive to it.
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this fact into account and using �0ð�;�Þ, �ð�;�Þ, and
�ð�;�Þ, it is possible to define a set of parameters that can
be used to study the goodness of the approximations ob-
tained by using the generalized peak counters introduced
here. In particular, we will consider

	ð�;�Þ ¼ �ð�;�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gcdð�;�Þp

�ð�;�Þ ;

aminð�;�Þ ¼ pminð�;�Þ�ð�;�Þ;

amaxð�;�Þ ¼ gcdð�;�Þ ð1� 	2ð�;�ÞÞ2
4	2ð�;�Þ �ð�;�Þ

and also

��stairsð�;�Þ ¼ � log�0ð�;�Þ
�ð�;�Þ ;

��gaussð�;�Þ ¼ �ð�;�Þ
�2ð�;�Þ

	
0
@1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2�2ð�;�Þ

�2ð�;�Þ log�0ð�;�Þ
s 1

A:
For our purposes, it suffices to consider those values of �
and � for which the argument of the square root in
��gaussð�;�Þ is positive. By using the following evident

facts:

�0ðn�; n�Þ ¼ �1=n
0 ð�;�Þ;

pminðn�; n�Þ ¼ npminð�;�Þ;
�ðn�; n�Þ ¼ 1

n
�ð�;�Þ;

�2ðn�; n�Þ ¼ 1

n
�2ð�;�Þ;

it is possible to see that these parameters satisfy

	ðn�; n�Þ ¼ 	ð�;�Þ;
aminðn�; n�Þ ¼ aminð�;�Þ;
amaxðn�; n�Þ ¼ amaxð�;�Þ
�stairsðn�; n�Þ ¼ �stairsð�;�Þ;
�gaussðn�; n�Þ ¼ �gaussð�;�Þ;

and, hence, they can be used consistently to assess the
appropriateness of the different partitions. Although we
will not give here a complete analytic proof, we provide
enough numerical evidence to support the choice of
Pð3; 2Þ as the best peak counter (as was to be expected)
in Figs. 8 and 9, where we show the values of 	ð�;�Þ and
�stairsð�;�Þ for 1 � �;� � 80.

Several comments are in order now. First we want
to comment on the role and meaning of aminð�;�Þ.
It is important to notice that all counters can be used to
exactly reproduce the behavior of the entropy. This is so
because they provide partitions of the set of black hole

FIG. 8 (color online). Values of 	ð�;�Þ for 1 � �, � � 80.
The abscissa corresponds to �. Darker colors represent the
largest (better) values of 	ð�;�Þ. The best choice is � ¼ 3,
� ¼ 2 for which 	ð3; 2Þ � 35.

1 20 40 60 80

1

20

40

60

80

1 20 40 60 80

1

20

40

60

80

FIG. 9 (color online). Values of ��stairsð�;�Þ for 1 � �,
� � 80. Darker colors represent the largest (better) values of
��stairsð�;�Þ. The best value corresponds to � ¼ 3, � ¼ 2 but
other choices give values very close to ��stairsð3; 2Þ. A similar
picture can be drawn for ��gaussð�;�Þ that essentially coincides

with this one for �> �. When �< � the behavior changes
because ��gaussð�;�Þ becomes larger than �� or even complex.

This does not change our conclusions about the goodness of
Pð3; 2Þ.
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configurations. However, the behavior of the associated
Gaussian approximations—available for all of them—
differ for different choices for �, � and are not optimal
in many instances. For example, before reaching the area
value given by aminð�;�Þ, it is not true that the Gaussian
approximation to the entropy can be understood as the sum
of equally spaced Gaussian steps. In fact, the distance
between consecutive steps in this regime is dictated by
the values of p (non-necessarily consecutive) that give
nonzero values for ½�p�G�ð�; 0;�;�Þ. When p �
pminð�;�Þ these values are separated by the gcdð�;�Þ
and are ‘‘as consecutive as possible.’’ When gcdð�;�Þ ¼
1 the value of pminð�;�Þ corresponds to one plus the
Frobenius number of the arithmetic sequence �kþ �
with k 2 N. This is given by [19] (see also [20])

pminð�;�Þ ¼ 1þ �ð�þ �� 1Þ:
The value of aminð�;�Þ by itself does not tell us anything
about the quality of Pð�;�Þ as a counter. In addition to the
threshold area, there is another relevant value
amaxð�;�Þ—that can be roughly defined as the maximum
area for which two consecutive steps can be discerned in
the Gaussian approximation—that plays an important
role. In fact, the interval length amaxð�;�Þ � aminð�;�Þ
tells us how well the chosen Gaussian approximation
captures both the structure at the smallest area scales and
the steps in the entropy. Though it is difficult to give a
unique definition for amaxð�;�Þ, it is obvious that the
broadening of the Gaussian steps signaled by the growth
of the variance �2ð�;�Þ leads to the difficulty of separat-
ing two consecutive ones beyond

amaxð�;�Þ ¼ gcdð�;�Þ ð1� 	2ð�;�ÞÞ2
4	2ð�;�Þ �ð�;�Þ:

This condition is derived by requiring that thewidth of a step
is essentially equal to the distance from the previous one.
Another quantitative criterion is provided by the exponents
in (5.8) and (5.9) that tell us the decay rate of the staircase
structure. The inverse of the numerical coefficient of the area
in the exponents of these expressions gives an order of
magnitude estimate of amaxð�;�Þ. In practice the best
choice of peak counter is the one giving both a low value
of aminð�;�Þ and a large value of amaxð�;�Þ. The numerical
evidence available tells us that the choice � ¼ 3 and � ¼ 2
is also optimal in this respect.

B. Peak substructures: Using two counters

As we have discussed in the previous section, it is
actually possible to partition the configuration space by
using different types of linear counters Pð�;�Þ. The best
choice, as far as the description of the entropy structure is
concerned, is P :¼ 3K þ 2N. The purpose of this section
is to explore the effects of performing a further partition of
the configurations corresponding to a single peak P ¼ p by
introducing an extra counter. The rationale behind this

analysis can be immediately perceived by looking at the
structure of a peak (see Fig. 10). As it can be seen, there are
coherent substructures within each peak that are respon-
sible for its asymmetric shape in a logarithmic plot. The
most obvious and straightforward way to address the de-
scription of this substructure is to use an additional peak
counter to further partition the space of configurations for a
single peak. This can naturally be done by including extra
variables in the generating functions. For example, when
the projection constraint is ignored, the moment-
generating function

G�ð�1;�2;sÞ
:¼ 1

1�2
P1

k¼1�
�1kþ�1

1 ��2kþ�2

2 expð�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þp Þ

takes into account the contributions of the counters P1 ¼
Pð�1; �1Þ and P2 ¼ Pð�2; �2Þ. This moment-generating
function satisfies

E�½expð�sAÞjp1; p2� ¼ ½�p1

1 �½�p2

2 �G�ð�1; �2; sÞ
½�p1

1 �½�p2

2 �G�ð�1; �2; 0Þ

FIG. 10 (color online). Detail of the peak P1 ¼ 3K þ 2N ¼
130. This logarithmic plot clearly shows the existence of several
subpeaks labeled by the counter P2 ¼ 5K þ 4N. Notice the
asymmetric shape (mentioned in Fig. 2).
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and can be derived from the obvious generalization of the
master generating function (2.3)

G�ð�1; �2; x1; x2; . . .Þ

:¼
�
1� 2

X1
i¼1

X1
n¼1

��1k
i
nþ�1

1 ��2k
i
nþ�2

2 xy
i
n

i

��1
: (6.2)

The black hole degeneracy spectrum for the configurations
satisfying P1 ¼ p1, P2 ¼ p2, and area a ¼ q1

ffiffiffiffiffiffi
p1

p þ
q2

ffiffiffiffiffiffi
p2

p þ � � � is given by

D�ðajp1; p2Þ ¼ ½xq11 xq22 � � ��½�p1

1 �
	 ½�p2

2 �G�ð�1; �2; x1; x2; . . .Þ:

In Fig. 10 we use P1 :¼ Pð3; 2Þ ¼ 3K þ 2N and P2 :¼
Pð5; 4Þ ¼ 5K þ 4N. This choice is favored by the argu-
ments presented in [8] and can also be understood by
looking at the role of the Pell equation in the characteriza-
tion of the area spectrum. A statistical description of the
subpeaks can be made by following the steps discussed in
previous sections. In particular a Gaussian approximation
can be obtained that, presumably, improves the one given
by a single peak counter Pð3; 2Þ. However, as we do not
expect the problems encountered above to be fixed by
following this approach (in particular the underestimate
of the value of �), we will not pursue it further. In any case,
it is obvious that, by introducing extra counters and study-
ing the statistical properties of the resulting peaks, one can
get improved approximations for the entropy.

VII. CONCLUSIONS AND COMMENTS

The main idea of the paper is to use the master generat-
ing functions, that encode the black hole degeneracy spec-
trum in an exact way, to derive statistical properties that
can be used to describe and understand the detailed fea-
tures observed in the black hole entropy. We have suc-
ceeded in reproducing, from a purely analytical point of
view, the staircase of the entropy and its behavior as a
function of the horizon area. In particular, we have shown
how and why the steps disappear. The key element of our
approach has been to use statistical properties of some
subsets of black hole configurations (the peaks defined
by P ¼ 3K þ 2N) to construct analytic approximations
for the black hole entropy. It is very important to highlight
the fact that we are not merely fitting the data but, rather,
computing, a priori, the relevant statistical parameters of
the peaks by employing the BH generating functions. In
particular, we have given a procedure that can be used to
get all the moments of the area distribution.

It is also necessary to emphasize that the partitions of the
space of BH configurations that we have exploited are
exact, so there is no approximation introduced by the
choice of the different peak counters. The smoothing of
the entropy obtained by adding Gaussian steps is a natural

one that works remarkably well for small areas.
Furthermore, there are important theorems in combinator-
ics that guarantee the convergence of the individual steps in
the entropy (selected by the peak counter) to Gaussian
distributions (after normalization). However, the sum of
the Gaussian steps does not converge to the entropy be-
cause, as we have shown, the linear growth predicted by the
Gaussian approximation is slightly smaller than the actual
one. It must be pointed out here that the numerical esti-
mates for �, even in the crudest approximations, are re-
markably good. In any case, the area range where the
Gaussian approximation is reliable (that can be essentially
obtained by comparing the actual growth given by the true
� and �gauss) is large enough to trust the Gaussian approxi-

mation regarding the disappearance of the staircase struc-
ture (see Fig. 7). Finally, we have discussed in Appendix C
an alternate way of assessing the validity of our approach
by looking at the pole structure of the Laplace transforms
of the entropy and its Gaussian approximation. The com-
parison of both analytic structures tells us that they differ in
their behavior far from the real axis. The numerical evi-
dence available gives tantalizing evidence (encoded in an
approximate periodicity that can be readily seen in Fig. 12)
that prevents us from excluding a revival of the observed
staircase structure for large-area values. In any case, we
deem this possibility quite unlikely.
We have given numerical evidence to support the elec-

tion of P ¼ 3K þ 2N as the best peak counter within the
class Pð�;�Þ ¼ �K þ �N, �, � 2 N. Its usefulness is
justified by the fact that in the low-area regime the variance
of the distributions associated with the peaks is much
smaller than the separation of the mean areas correspond-
ing to consecutive peaks. This explains why a staircase
structure must be seen in this regime. The actual compari-
son of the exact entropy values with the prediction given by
our model is very compelling. In any case, it is conceivable
that other functions, more general than the counters
Pð�;�Þ that we have discussed, can be defined in order
to better understand and approximate the large-area behav-
ior of the entropy and the value of �.
Although most of the computations carried out in the

paper have made use of the DL prescription to obtain the
black hole entropy [12], our methods can be extended in a
completely straightforward way to other countings such as
the SUð2Þ proposal of [3,4]. The numerical details differ
from the ones that we have presented above but the quali-
tative conclusions—which are independent of the concrete
form of the projection constraint or equivalent condi-
tions—remain unchanged. In particular, when the condi-
tion that plays the role of the projection constraint in this
case is ignored, the moment-generating function is [10]
(here ENP refers to Engle, Noui, and Perez)

GENP� ð�; sÞ ¼ 1

1�P1
k¼1ðkþ 1Þ�3kþ2 expð�s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp Þ

:
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By following the methods described in the paper step by
step, one finds that �0 ¼ ð0:73996900 � � �Þ is now the
smallest real root of the polynomial �8 þ �6 � 2�5 �
2�3 þ 1. The values for � and �2 are obtained from the
function

QENP� ð�; sÞ ¼ 1� X1
k¼1

ðkþ 1Þ�3kþ2 expð�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp Þ:

They are � ¼ ð0:34980945 � � �Þ and �2¼
ð0:00010926���Þ. The staircase and Gaussian approxima-
tions to the entropy lead to the following values for the
Immirzi parameter: ��stairs ¼ ð0:86088860 � � �Þ and
��gauss ¼ ð0:86100438 � � �Þ. These have to be compared

with ��ENP ¼ ð0:86100642 � � �Þ obtained in [21]. The
analytic structure of the Gaussian approximation is similar
to the one shown in Fig. 11 and, then, the behavior of the
entropy is essentially the same as in the DL case. It is
obtained from this one by changing the values of the
parameters �0, �, and �2. The projection constraint can
be introduced in the same way as before and, as expected,
only configurations with even P contribute in this case.
The relevant singularities in the Laplace transform are
located at s�
 ¼ ð0:81057903 � � �Þ � ð17:96628553 � � �Þi
and s
 ¼ ð0:84839767 � � �Þ � ð8:98324891 � � �Þi. This
leads to a doubling of the size of the steps and the persis-
tence of the staircase structure for larger values of the
horizon area in the case when the projection constraint is
taken into account.

A last comment that we want to add is related to
the values of the areas for which the steps in the entropy
and the peaks in the BH degeneracy spectrum cease to
be seen. As the entropy is obtained by integrating the
degeneracy spectrum and taking the logarithm of the re-
sulting sum, it is to be expected that the effective disap-
pearance of the steps takes place for smaller values of the
areas than the disappearance of the corresponding peaks in
the degeneracy spectrum. This must be taken into account
in order to correctly interpret the meaning of the substruc-
tures found in the behavior of the entropy as a function of
the area.
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APPENDIX A: COMPUTATION OF THE
MOMENTS WHEN THE PROJECTION
CONSTRAINT IS NOT CONSIDERED

In this appendix we will derive the mean and variance of
the area distribution in the nonprojection constraint setting
by using (3.8). They are given by

��p :¼ E�½Ajp�

¼ 2

��p
½�p�

��
�3 � 1

2�5 þ �3 � 1

�
2 X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þ

p
�3kþ2

�

and �2�p ¼ E�½A2jp� ��2�p, where

E�½A2jp� ¼ 1

��p
½�p�

�
2�5ð�3 � 3Þ

ð�3 � 1Þð2�5 þ �3 � 1Þ2

þ 8ð�3 � 1Þ3ðP1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

�3kþ2Þ2
ð2�5 þ �3 � 1Þ3

�
:

Here, as in the main body of the paper, we use the notation

��p :¼ ½�p�
�

�3 � 1

2�5 þ �3 � 1

�
:

The computation of the coefficients in the Taylor expan-
sions about � ¼ 0 that appear in the previous formulas can
be easily carried out, for instance, by using the Cauchy
integral theorem

½�p�fð�Þ ¼ 1

2�i

I
C

fð�Þ
�pþ1

d�;

where C is an index-one curve surrounding the origin
� ¼ 0 (and leaving the remaining singularities of the in-
tegrand outside). The pole at the origin has order pþ 1
so, in practice, it is better to compute the integral by
moving the contour radially outward and picking up the
contributions of the remaining singularities of fð�Þ=�pþ1.
This is useful because they are, in many cases, poles of a
fixed, p-independent order with a p-dependent residue.
The value of ��p can be easily obtained by using this

procedure,

��p ¼ 1

2�i

I
C

1

�pþ1

�3 � 1

2�5 þ �3 � 1
d�

¼ � X2
i¼�2

Res

�
�3 � 1

�pþ1ð2�5 þ �3 � 1Þ ;�i

�

¼ X2
i¼�2

2�2
i

ð10�2
i þ 3Þ

1

�p
i

;

where the �i are the five different roots of the polynomial
2�5 þ �3 � 1. We have used the convention that �i and ��i

are complex conjugate of each other. The single real root,
�0 ¼ ð0:77039825 � � �Þ, is the one with the smallest mod-
ule (a closed expression for �0 in terms of hypergeometric
functions is given in [10]). The previous expression shows
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that the asymptotic behavior for large values of p of ��p is
given by

��p � 2�2
0

ð10�2
0 þ 3Þ

1

�p
0

; p ! 1:

There are other alternative expressions for the coefficients
��p. For example they satisfy the simple recursion relation

��pþ5 ¼ ��pþ2 þ 2��p; p � 0;

��0 ¼ 1;

��1 ¼ ��2 ¼ ��3 ¼ ��4 ¼ 0:

They can also be written in terms of binomial coefficients
as

��p ¼ Xb2p=5c
n¼bðpþ1Þ=3c

23n�p p� 2n� 1
3n� p� 1

� �
; p � 5:

The numerators appearing in the expressions for the mean
and the variance can also be obtained in closed form by
using the Cauchy integral formula. However the expres-
sions thus obtained are not very illuminating so here we
will only give their leading asymptotic behavior for large
values of p. In both cases this is given by a term linear in p,

��p �� � pþ�0 ¼ ð0:34959022 � � �Þ � p
þ ð0:00019724 � � �Þ

�2�p � �2 � p ¼ ð0:00009817 � � �Þ � p;

where �, �0, and �2 are given in terms of �0,

� ¼ 4�2
0

10�2
0 þ 3

�X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þ

p
�3kþ2
0

�

�0 ¼
�
8�2

0ð20�2
0 þ 3Þ

ð10�2
0 þ 3Þ2 þ 2ð5�3

0 þ 1Þ
�3
0ð10�2

0 þ 3Þ
�

	 X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

�3kþ2
0 � 2�0ð1� �3

0Þ
�3
0ð10�2

0 þ 3Þ

	 X1
k¼1

ð3kþ 2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

�3kþ1
0

�2 ¼ �� 2� ��0;

where

� ¼ 3� �3
0

�3
0ð1� �3

0Þð10�2
0 þ 3Þ þ

�
12ð20�2

0 þ 3Þð1� �3
0Þ3

�11
0 ð10�2

0 þ 3Þ3

þ 6ð1� �3
0Þ2ð5�3

0 þ 1Þ
�11
0 ð10�2

0 þ 3Þ2
��X1

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

�3kþ2
0

�
2

� 8�0ð1� �3
0Þ3

�11
0 ð10�2

0 þ 3Þ2
�X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp

�3kþ2
0

�

	
�X1
k¼1

ð3kþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þ

p
�3kþ1
0

�

¼ ð0:00023608 � � �Þ:

The results obtained by this method are completely equiva-
lent to those presented in Sec. V. Higher moments can be
computed by using the same procedure described here.

APPENDIX B: COMPUTATION OF THE
MOMENTS WHEN THE PROJECTION

CONSTRAINT IS CONSIDERED

As we have discussed in Sec. III B, the incorporation of
the projection constraint requires us to introduce of an
extra variable z in the moment-generating function
Gð�; s; zÞ. To compute the moments in the area distribution
we have to find out some s-derivative, evaluated at s ¼ 0,
of Gð�; s; zÞ. This derivative gives rise to a new function
fð�; zÞ whose coefficient fp ¼ ½z0�½�p�fðz; �Þ allows us to
determine the moments in the area distribution. This pro-
cess defines a function Fð�Þ ¼ P

pfp�
p of the single vari-

able � that is desirable to have in closed form. We describe
in this appendix how this can be done. What we need to
find is

Fð�Þ ¼ X1
p¼0

fp�
p ¼ X1

p¼0

�p½z0�½~�p�fð~�; zÞ

¼ X1
q¼0

�p 1

2�i

I
C1

dz

z
½~�p�fð~�; zÞ;

whenever fð~�; zÞ is an analytic function of z for all the
values of ~� in a neighborhood of ~� ¼ 0. If ½~�q�fðz; ~�Þ is a
Laurent polynomial at z ¼ 0 we can choose any contour
surrounding z ¼ 0 for C1 (as long as it is piecewise smooth
and of index one). Now if fð~�; zÞ is analytic at ~� ¼ 0 for all
the values of z 2 C1 the previous expression can be re-
written as

Fð�Þ ¼ X1
p¼0

�p 1

2�i

I
C1

dz

z

1

2�i

I
C2

d~�

~�pþ1
fð~�; zÞ;

where the contour C2 (again piecewise smooth and of
index one) is now chosen in such a way that, for each
z 2 C1, the only singularity surrounded by it is ~� ¼ 0. We
can now exchange the order in the integrals to get
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Fð�Þ ¼ X1
p¼0

�p 1

2�i

I
C2

d~�

~�pþ1

1

2�i

I
C1

dz

z
fð~�; zÞ

¼ 1

2�i

I
C1

dz

z
fð�; zÞ; (B1)

whenever the last integral is an analytic function of � in an
open neighborhood of � ¼ 0. If the integration contours
are chosen according to the prescription described here,
there are (generically) singularities of z � fð�; zÞ=z inside
C1 [in most of the cases z ¼ 0 and, eventually, others
coming from fð�; zÞ, which will be functions of �]. The
residues at these singularities give us a closed-form
expression for

Fð�Þ ¼ 1

2�i

I
C1

dz

z
fð�; zÞ:

In many practical situations it is convenient to choose a
unit, positively oriented, circumference for C1. This is so
because, for this choice, it is possible to simplify expres-
sions of the type

Fð�Þ ¼ 1

2�i

I
C1

dz

z
ðzk þ z�kÞgð�; zþ z�1Þ

¼ 1

�i

I
C1

dz

z
zkgð�; zþ z�1Þ; k 2 N;

as can be easily seen by performing the change of variable
z � z�1 in the second term of the first integral. In the
particular case of interest, by setting s ¼ 0 in the master
generating function Gð�; s; zÞ, we find

fð�; zÞ ¼ Gð�; 0; zÞ ¼ 1

1�P1
k¼1ðzk þ z�kÞ�3kþ2

¼ z2�3 � z�6 � zþ �3

z2�5 þ z2�3 � 2z�8 � z�6 � zþ �5 þ �3
:

In order to apply the previous procedure we first take a unit,
positively oriented, circumference forC1. With this choice,
and once a suitable C2 contour is picked, the two relevant
poles in the integrand (B1) are z ¼ 0 and

z ¼ 1þ 2�8 þ �6 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�2 � 1Þð�4 þ �2 þ 1Þð2�5 þ �3 � 1Þð2�5 þ �3 þ 1Þp
2�3ð�2 þ 1Þ ;

so that

Fð�Þ ¼ 1

1þ�2

�
1þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�3 � 1

2�5 þ�3 � 1

��
�3 þ 1

2�5 þ�3 þ 1

�s �
:

Some facts are evident at this point. In particular, the
coefficient �p :¼ ½�p�Fð�Þ is zero for odd values of p.
For large even values of p the asymptotic behavior of �p is
controlled by the singularities � ¼ 
�0 and is

�2q � 1

1þ �2
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�0ð1� �6

0Þ
�ð10�2

0 þ 3Þ

vuut 1ffiffiffiffiffiffi
2q

p
�2q
0

:

The mean �p is computed by following the same steps

as in the nonprojection constraint case. In particular
�p ��p is given by the ½�p� coefficient of
2�6ð�6�1Þ2
ð1þ�2Þ2Rð�Þ

X1
k¼1

k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þ

p �
2�6ð1þ�2Þ

Q1ð�Þþ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp �

k

þ 2�4ð�6�1Þ2Q2ð�Þ
ð1þ�2Þ2Rð�Þ ffiffiffiffiffiffiffiffiffiffi

Rð�Þp X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ2Þ

p �
2�6ð1þ�2Þ

Q1ð�Þþ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp �

k
;

where

Rð�Þ :¼ð�2�1Þð�4þ�2þ1Þð2�5þ�3þ1Þð2�5þ�3�1Þ
Q1ð�Þ :¼2�8þ�6þ1

Q2ð�Þ :¼2þ�2�2�6�7�8�6�10:

For large even values of p, the asymptotic behavior of �p

is also controlled by the singularities � ¼ 
�0. In particu-
lar, by using the identities

�
2�6

0ð1þ �2
0Þ

2�8
0 þ �6

0 þ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rð
�0Þ

p �
k ¼

�
2�6

0ð1þ �2
0Þ

2�8
0 þ �6

0 þ 1

�
k ¼ �3k

0 ;

it is straightforward to show that

�2q � 2�q; q ! 1;

where, as in the nonprojection constraint case,

� ¼ 4�2
0

10�2
0 þ 3

�X1
k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þ

p
�3kþ2
0

�
:

Finally, ð�2
p þ�2

pÞ � �p is given by the ½�p� coefficient of
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4�10ð�6�3Þ
ð1þ�2Þ3ð�6�1Þ3þ

4�12ð�6�3ÞQ5ð�Þ
ð1þ�2Þ3ð�6�1ÞRð�Þ2 ffiffiffiffiffiffiffiffiffiffi

Rð�Þp þ4ð1þ�2Þð�6�1ÞðQ6ð�Þ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp þQ4ð�ÞÞ

�2Rð�ÞðQ3ð�Þ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp �Q1ð�ÞRð�ÞÞ

þ ð�6�1Þ3�6

ð1þ�2Þ3R2ð�Þ ffiffiffiffiffiffiffiffiffiffi
Rð�Þp X1

k1¼1

Xk1�1

k2¼1

22þk2�k1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1þ2Þk2ðk2þ2Þ

q �
Q1ð�Þ�

ffiffiffiffiffiffiffiffiffiffi
Rð�Þp

1þ�2

�
k1�k2

�6k2ðQ7ð�Þþ3ðk2�k1Þ�2

	Q2ð�Þ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp �ðk2�k1Þ2�4Rð�ÞÞþ ð�6�1Þ3�6

ð1þ�2Þ3R2ð�Þ ffiffiffiffiffiffiffiffiffiffi
Rð�Þp X1

k1¼1

X1
k2¼1

21�k1�k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1ðk1þ2Þk2ðk2þ2Þ

q �
Q1ð�Þ�

ffiffiffiffiffiffiffiffiffiffi
Rð�Þp

1þ�2

�
k1þk2

	ðQ7ð�Þ�3ðk1þk2Þ�2Q2ð�Þ
ffiffiffiffiffiffiffiffiffiffi
Rð�Þp �ðk1þk2Þ2�4Rð�ÞÞ;

where

Q3ð�Þ :¼ 1� 2�10 þ �12 þ 4�14 þ 4�16

Q4ð�Þ :¼ 1� �2 þ �4 � 3�6 � 3�8 � 5�10 þ 3�12 þ 3�14 þ 11�16 þ 7�18 þ 7�20 � �22 � 4�26

Q5ð�Þ :¼ 3þ 3�2 þ �4 � 9�6 � 27�8 � 27�10 þ 5�12 þ 47�14 þ 81�16 þ 65�18 þ 5�20 � 55�22 � 64�24 � 28�26

Q6ð�Þ :¼ �1þ �2 � �4 þ 2�6 þ 2�8 þ 4�10 � �12 þ �14 � �16 þ 2�18

Q7ð�Þ :¼ �2ð3þ 3�2 þ �4 � 6�6 � 24�8 � 26�10 � �12 þ 23�14 þ 55�16 þ 64�18 þ 28�20Þ:

The asymptotic behavior of �2q can be obtained in a
straightforward (albeit tedious) way from the preceding
expressions.

APPENDIX C: ANALYTICAL PROPERTIES
OF THE LAPLACE TRANSFORM

OF THE ENTROPY IN THE
GAUSSIAN APPROXIMATION

In order to understand the main features of the
Gaussian approximation for the entropy, in particular its
asymptotic behavior as a function of the area, it is very
convenient to rely on Laplace transform methods. This is
so because the asymptotics of a function can be understood
in many cases by looking at the analytic structure of its
Laplace transform, specifically the locations of its singu-
larities and their type. In our case, and despite the fact that
the behavior of the Gaussian approximation can be roughly
understood from the features of the individual steps, the
detailed behavior of the sum is much harder to get. In
particular the realization of the fact that the value of the
Immirzi parameter is not exactly recovered in this approxi-
mation really demands a detailed analysis for which the use
of Laplace transform methods is especially appropriate.
The arguments given below refer to Pð3; 2Þ but can be
trivially extended for other peak counters Pð�;�Þ, defined
in Sec. VI, as long as

1þ 2�2ð�;�Þ
�2ð�;�Þ log�0ð�;�Þ> 0:

Let us consider first the nonprojection constraint case

LðexpSgauss� ; sÞ

¼ 1

s
þ �2

0

ð10�2
0 þ 3Þs

X1
p¼5

1

�p
0

�
1� erf

�
�ffiffiffi
2

p
�

ffiffiffiffi
p

p ��

þ �2
0

ð10�2
0 þ 3Þs

X1
p¼5

1

�p
0

�
1þ erf

�
�2s��ffiffiffi

2
p

�

ffiffiffiffi
p

p ��

	 exp

��
�2

2
s2 ��s

�
p

�
: (C1)

The well-known asymptotic behavior of the error function

erf ðxÞ � 1� e�x2ffiffiffiffi
�

p
x
; x 
 1;

guarantees the convergence of the first series in (C1),
hence, the first two terms have a very simple singularity
structure: just a simple pole at s ¼ 0. Let us concentrate
then on the last series in (C1)

X1
p¼5

1

�p
0

�
1þ erf

�
�2s��ffiffiffi

2
p

�

ffiffiffiffi
p

p ��
exp

��
�2

2
s2 ��s

�
p

�
:

(C2)

By using now the following asymptotic formula for the
error function for complex values of its argument:
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ez
2ð1� erfðzÞÞ � 1ffiffiffiffi

�
p

z

�
1þ X1

m¼1

ð�1Þm ð2m� 1Þ!!
ð2z2Þm

�
;

z ! 1; j argðzÞj< 3�

4

it is possible to prove the point convergence of the series
(C2) in the wedge j argðs��=�2Þj< 3�=4. In the region
j argðs��=�2Þj> 3�=4 the asymptotic behavior is
given by

erf ðzÞ � �1� e�z2ffiffiffiffi
�

p
z
; z ! 1 j argðzÞj> 3�

4
:

In order to have point convergence in this case for (C2) we
have to demand (5.4)

Re

�
�2

2
s2 ��s� log�0

�
¼ 0:

The divergence of the Laplace transform on the hyperbola
defined by this condition can be absorbed in the singular-
ities of the function

F�singðsÞ ¼
X1
p¼0

��p
0 exp

�
p

�
�2s2

2
��s

��

¼ 1

1� expð�2s2

2 ��s� log�0Þ
in the region j argðs��=�2Þj> 3�=4 (see Fig. 11). These
singularities control the asymptotics of the Gaussian ap-
proximation to the entropy as discussed in Sec. V. When
the projection constraint is taken into account it is straight-

forward to identify the function Fsing that encodes the

singularities of the Laplace transform of the Gaussian
approximation to the entropy

FsingðsÞ ¼
X1
q¼1

��2q
0 ffiffiffi
q

p exp

�
2q

�
�2s2

2
��s

��

¼ Li1=2ðexpð�2s2 � 2�s� 2 log�0ÞÞ:

We end this appendix by giving an additional way to
compare the exact behavior of the entropy and the
Gaussian approximation. The Laplace transform inversion
formula tells us that given the Laplace transform of a
function Lðf; sÞ it is possible to recover f by using the
inversion formula

fðaÞ ¼ 1

2�i

Z x0þi1

x0�i1
Lðf; sÞeasds:

The integration contour can be taken to be a line
ReðsÞ ¼ x0, parallel to the imaginary axis leaving all the
singularities of the integrand to its left. The Laplace trans-
form of the exact entropy is

L ðexpS�; sÞ ¼ 1

1� 2
P1

k¼1 expð�s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 2Þp Þ

:

If we now compare the Laplace transforms LðexpS�;
��þ iyÞ and LðexpSgauss� ; ��þ iyÞ by plotting their ab-
solute values as functions of y we get the result shown in
Fig. 12. As can be seen, there is a remarkable agreement
between both plots for small values of y, however this
agreement disappears for larger values. This is due to the
fact that the real parts of the poles of the Laplace transform
of the Gaussian approximation do not accumulate because
they are located on hyperbolas as explained in this appen-
dix and in Sec. V.

0 20 40 60 80 100

2

4

6

8

FIG. 12 (color online). Comparison between the absolutes
values of the Laplace transformsLðexpS�; ��þ iyÞ (continuous
line) and LðexpSgauss� ; ��þ iyÞ (dashed line).

FIG. 11 (color online). We represent here the regions relevant
to the discussion of the convergence of the functional series
(C2). We also plot the position of the relevant singularities of the
Laplace transform (there is an infinite number of other isolated
singularities also located on the hyperbola which are not relevant
for the analysis presented in the paper).
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