1,985 research outputs found

    Thermally induced spin rate ripple on spacecraft with long radial appendages

    Get PDF
    A thermally induced spin rate ripple hypothesis is proposed to explain the spin rate anomaly observed on ISEE-B. It involves the two radial 14.5 meter beryllium copper tape ribbons going in and out of the spacecraft hub shadow. A thermal lag time constant is applied to the thermally induced ribbon displacements which perturb the spin rate. It is inferred that the averaged thermally induced ribbon displacements are coupled to the ribbon angular motion. A possible exponential build up of the inplane motion of the ribbon which in turn causes the spin rate ripple, ultimately limited by damping in the ribbon and spacecraft is shown. It is indicated that qualitative increase in the oscillation period and the thermal lag is fundamental for the period increase. found that numerical parameter values required to agree with in orbit initial exponential build up are reasonable; those required for the ripple period are somewhat extreme

    Motion of the angular momentum vector in body coordinates for torque-free dual-spin spacecraft

    Get PDF
    The motion of the angular momentum vector in body coordinates for torque free, asymmetric dual spin spacecraft without and, for a special case, with energy dissipation on the main spacecraft is investigated. Without energy dissipation, two integrals can be obtained from the Euler equations of motion. Using the classical method of elimination of variable, the motion about the equilibrium points (six for the general case) are derived with these integrals. For small nutation angle, theta, the trajectories about the theta = 0 deg and theta = 180 deg points readily show the requirements for stable motion about these points. Also the conditions needed to eliminate stable motion about the theta = 180 deg point as well as the other undesireable equilibrium points follow directly from these equations. For the special case where the angular momentum vector moves about the principal axis which contains the momentum wheel, the notion of 'free variable' azimuth angle is used. Physically this angle must vary from 0 to 2 pi in a circular periodic fashion. Expressions are thus obtained for the nutation angle in terms of the free variable and other spacecraft parameters. Results show that in general there are two separate trajectory expressions that govern the motion of the angular momentum vector in body coordinates

    In-orbit flexible spacecraft dynamics program

    Get PDF
    A continuous flexible body nonlinear dynamics computer program is used for simulating the spinning mode performance of a spacecraft under applied control torques. The program takes into account the continuous flexible nature of the antennas by representing deflections in terms of shape functions and integrated the spatial dependence in the formulation of the equations of motion. Comparison of RAE flight data on roll, pitch, and yaw with predictions of the computer program in the gravity gradient mode show fair to good agreement in roll and pitch and excellent agreement in the yaw angle

    Stretch de-spin mechanism Patent

    Get PDF
    Stretch Yo-Yo mechanism for reducing initial spin rate of space vehicl

    Personnel emergency carrier vehicle

    Get PDF
    A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly

    The evolutionary trend in airborne and satellite radar altimeters

    Get PDF
    The manner in which airborne and satellite radar altimeters developed and where the trend is leading was investigated. The airborne altimeters have progressed from a broad beamed, narrow pulsed, nadir looking instrument, to a pulse compressed system that is computer controlled, to a scanning pencil beamed system which produce a topographic map of the surface beneath the aircraft in real time. It is suggested that the airborne systems lie in the use of multiple frequencies. The satellite altimeters evolve towards multifrequency systems with narrower effective pulses and higher pulse compression ratios to reduce peak transmitted power while improving resolution. Applications indicate wide swath systems using interferometric techniques or beam limited systems using 100 m diameter antennas

    Dynamics of Flexible Spinning Satellites with Radial Wire Antennas

    Get PDF
    A dynamic analysis is presented for a spin stabilized spacecraft employing four radial wire antennas with tip masses, a configuration first employed in the IMP-J spacecraft. The use of wires in place of the usual booms represents the ultimate in weight reduction at the expanse of flexibility. The satellite is modelled as a 14 degree of freedom system, and the linearized equations of motion are found. The lowest order vibrational modes and natural frequencies of the gyroscopically coupled system are then determined. Because the satellite spin rate is decreased by antenna deployment, a spin-up maneuver is needed. The response of the time varying mode equations during spin-up is found, for the planar modes, in terms of Bessel functions and a Struve function of order -1/4. Because tables of the latter are not readily available, the particular solution is expressed in various forms including an infinite series of Bessel functions and a particularly useful asymptotic expansion

    Development of a system for remote sensing of ionospheric motions and microstructure - The Kinesonde in France, 1970

    Get PDF
    Kinesonde experiment for development of system for remote sensing of ionospheric motions and microstructur

    Electron scattering in HCl: An improved nonlocal resonance model

    Get PDF
    We present an improved nonlocal resonance model for electron-HCl collisions. The short-range part of the model is fitted to ab initio electron-scattering eigenphase sums calculated using the Schwinger multichannel method, while the long-range part is based on the ab initio potential-energy curve of the bound anion HCl-. This model significantly improves the agreement of nonlocal resonance calculations with recent absolute experimental data on dissociative electron attachment cross sections for HCl and DCl. It also partly resolves an inconsistency in the temperature effect in dissociative electron attachment to HCl present in the literature. Finally, the present model reproduces all qualitative structures observed previously in elastic scattering and vibrational-excitation cross sections
    corecore