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DYNAMICS OF FLEXIBLE SPINNING SATELLITES
WITH RADIAL WIRE ANTENNAS

Abstract

A dynamic analysis is presented for a spin stabilized spacecraft employing
four radial wire antennas with tip masses, a configuration first employed in the
IMP-J spacecraft. The use of wires in place of the usual booms represents the
ultimate in weight reduction at the expense of flexibility. The satellite is modelled
as a 14 degree of freedom system, and the linearized equations of motion are
found. The lowest order vibrational modes and natural frequencies of the gyro-
scopically coupled system are then determined. Because the satellite spin rate
is decreased by antenna deployment, a spin-up maneuver is needed. The response
of the time varying mode erfzatlors during spin-up is found, for the planar modes,
in terms of Bessel functions and a Struve function of order -1/4. Because tables
of the latter are not readily available, the particular solution is expressed in
various forms including an infinite series of Bessel functions and a particularly
useful asymptotic expansion. An error formula for the latter is derived showing
that it gives good accuracy. Also, a simple approximation to the complementary
function is obtained using the WKB method, and the phase error in the a, proxi-
mation is shown to be small.
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DYNAMICS OF FLEXIBLE SPINNING SATELLITES
WITII RADIAL WIRE ANTENNAS

Introduction

A dynamic analysis is presented for a spin stabilized spacecraft employing
four radial wire antennas with tip masses. Most satellite designs use booms
which are made as rigid as possible within weight and storage limitations. The
design analyzed here represents a logical extreme of weight reduction, in which
the booms are replaced by wires; anti correspondingly it represents an extreme
in flexibility since the wires have essentially no bending stiffness. An effective
bending stiffness is supplied by the spin of the spacecraft.

Among the advantages of the wires over the boom configuration are that the
wires are lighter, and the deployment devices simpler. In a spin stabilized
spacecraft the deployment decreases the rotation raze. Hence, a spin-up
maneuver is required. Here again the wires have advantages. Less fuel is
needed in the spin-up, creating an additional savings in weight, and there are
no problems of buckling at the root during the maneuver. Prior to planning of
the IMP-J spacecraft (see Figure 1) for which this study was made, probably the
major deterrent to the use of the radial wire configuration was the apparent
complication in predict i ng dynamic behavior, together with a fear of the effects
of extreme flexibility on spacecraft behavior and stability. These difficulties
are more apparent than real for a space vehicle with high spin rate. As is
evident from the present analysis, the radial wire problem is an order of mag-
nitude more tractable than the problem with nonzero bending stiffness.

For purposes of the analysis, the satellite is modelled as a symmetric rigid
body with four radial spherical physical pendulums. Thus, the model predicts
the behavior of only the lowest order vibrational modes in which the wires be-
have as rigid bodies hinged at their attachment points. These modes definitely
predominate at high spin rates, as in the case of the IAIP-J. This vehicle is
designed to spin at least at 23 rpm at all times. The wires when fully extended
are 200 ft. long, and weigh 1/2 gram per foot with small 3 gram tip masses at
their ends. Note that the distributed mass of the wire is much more important
than the trip masses, so that a simple pendulum model cannot be substituted for
the p: esent physical pendulum model with distributed centrifugal loading.

The quadratic approximation to the Langrangian is obtained, aid from it the
linearized equations of motion for the 14 degree of freedom systen . A
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transformation of variables gives these equations in a form where the vibrational
mode shapes and their natural frequencies can be recognized. The presence of
gyroscopic coupling complicates this process, and produces an eighth order
characteristic equation which must be factored to get some of the system natural
frequencies. 'Phis problem is then reduced to one of finding roots of a cubic
equation, and an approximate method based on root locus techniques from control
theory is used to obtain the roots in the case of the IMP-J. Implicit in this solu-
tion for the mode shapes and mode frequencies, is the general solution of the
differential equations of motion of the satellite for any given initial conditions.

The spin-up maneuver needed in antenna deployment is a planar operation.
In order to analyze the behavior of the wires during spin-up, the differential
equations for the planar mode variables are obtained, linearized about the rigid
body spin-up solution. Although these equations are linear, they have time
varying coefficients, and thus present some difficulties in obtaining their general
solutions. By a transformation into the complex plane, the gyroscopically coupled
modes, as well as the other planar modes, are all shown to be governed by one
fundamental equation. By proper transformations of both the dependent and
independent variables the analytic solution of this equation is obtained in terms
of Bessel functions of order f1/4 and a Struve function of order -1/4.

Because tables for the needed Struve function are not readily available, ap-
proximate solutions are obtained which give additional insight into the satellite
behavior. The complementary function can be approximated using the WKB
method, and the phase error is shown to remain small. The Struve function can
be approximated using a Taylor series, but convergence is very slow. Some-
wi.at faster convergence is obtained by deriving an expansion in terms of an in-
finite series of Bessel functions. However, it is shown that the most useful
expression for the particular solution is in the form of an infinite asymptotic
expansion which diverges for all finite time, but nevertheless gives very good
accuracy when a small number of terms are used. An error formula is derived
which expresses the error present in this approximation, and also gives a lower
bound on the number of terms which can be included before the error begins to
increase. Combining these approximate solutions gives the general solution for
the planes- response of the system under a spin-up torque.

Quadratic Approximation to the Lagrangian

We wi h to obtain the equations of motion linearized about a steady rigid
body spi,. for the modal analysis, and linearized about a rigid body spin-up
cor ,• espo	 to a constant applied torque for the spin up analysis. The formu-
l.Ltion u812d will obtain both sets of linearized equations simultaneously. It
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INERTIAL AXES (I)

Figure 2. Inertial and flub Fixed
Coordinate Systems

suffices to use the quadratic approximation to the Lagrangian in order to obtain
linearized equations of motion using Lagrange's equations. Since there is no
potential energy we need only the quadratic approximation to the kinetic
energy, T.

Figure 2 shows an inertially fixed coordinate system XYZ and coordinates
xyz fixed in the symmetric hub of the spacecraft and centered at its center of
mass. Let R,,, be the vector from the center of the inertially fixed coordinates
to an arbitrary volume element dV of the spacecraft, and let R off and R HV be as
shown. Then the velocity of the element dV relative to inertial space is
dROv/dt f , the time derivative in inertial (I) axes. The spacecraft kinetic
energy can be written

T 
_	 li^1f^ 	 ^,

	 °(IV + ! f f
	^Itv	 ,It

^

(IV,^^
^
(it	 d tt

fL 

f"

 I 	i 	 N'.LCS	 ^	 I	 f
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I ((IROv
n^

^	 (it	 d t

T,P Mks se • s	 I

where p is the density and m , is the mass of a tip mass.
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The mig,Tular velocity w of the hub axes relative to inertial space expressed
in hub coordinates will be needed. It can be written as

01 	^I cos o2 cos 03 + f^ 2 sin 03

.,	 «2	 - 01 Cos B 2 s i n 03 + N2 cos 03

"3
	 1 s i n 02 + 93

where ' I , O , , and t' are 1, 2, 3 type Euler angles, i.e. a rotation through
angle , in a right handed sense about X, followed by a rotation d 2 about the
resulting; Y axis, and then a rotation,, 

3 
about the resulting 'I, axis gives a set

of axes parallel to the hub xyz coordinate system.

To perform the lintarization we can write

A3 = WO ( t ) + 6f 3

B3 - ^(t) + SB3

where 8 03 and 3 are assumed small quantities. For the modal analysis we
linearize about the steady rotation of a rigid body, so that wo (t) = . t, a constant
angular velocity about the spin axis, and - (t) _ << t. For the spin-up analysis we
need to linearize about the values of ^3 and a 3 corresponding to a constant
torque Q applied about the spin axis, assuming the satellite to be rigid and to
have moment of inertia I 3 about that a.ds. Thus, we let

N O (t) = U;O + (Q-'' 3 ) t

kt) _ °'o t + I (Q, I3) t2

where _.o is the initial spin rate before spin-up.

The q adratic approximation to the angular velocity can now be written

i
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0	 (11 Cos	 02 Sill	 13 Si11 q) i (2603 COS 4'

p	 + - r+1 S i ll	 1
2 

coss	 3' O b;' cos 	- N 2 a'7 S i ll 4 ,	 ...
1	 3

Lei	 1	 ^rIt)2

iµin + W1 , W2 f .. .

'	 Here and elsewhere the three dots indicate terms of higher order than quadratic.
The other angles "1 and '2 are expanded about zero nominal values.

The true generalized coordinates for the center of mass of the hub will be
the components X, Y, Z of It „ 11 in inertial space. Their derivatives X, Y,
represent the components in coordinate system I of the inertial derivative
dlt of1 /dt 1 . It will be convenient to define x }1 , y11, TI1 as the components of this
vector in the hub 11 coordinate system (not to be confused with components of
the derivative of it^^ 11 as seen in 11 coordinates, (111 If /dtI 11—	 )

i 

The first term in Eq. (1) represents the kinetic energy of the hub, and can
be written as the sum of the translational kinetic energy of the center of mass
and the rotational kinetic energy about the enter of mass:

	

l rtt (x 2 . y 2	 z 2 ) + l j	 (^, 2 + w 2 ) + l I ,,,2

	

N	 II	 11	 H	 2 Ill	 1	 2	 2 H3 3

where m I1 is the mass of the hub, and I 111 , I 111 , 1113 are the principle moments
of inertia about x, y, and z axes respectively. T"9 z axis is the axis of sym-
metry. The quadratic approximation for this is obtained by substituting the
above quadratic approximation to

In order to calculate the second and third terms of Eq. (1) we must de-
termine the ire-tial velocity d R Ov/dt' 1 of a volume element of the wire or the
tip mass. Using Coriolis law we can write

0

(IROV	
dROH	 dR

l1v	 `IRON	
rIR

11v

dt	 dt	 + d 	 d 	 d 	
+ tux R11V

II

	 I	 1	 I	 H
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The term dit, W /dt I N represents the rate~' of change of R IIN, as seen in H
coordinates.

figure 3 shows a volume element dV of the I"' wire. The variables a, and
b, are the in-plane and out-of-plane angles specifying the deviation of the wire
from the nominal position. The c i represent the angle from the x hub axis to
the i"' nominal wire position, and c 1 is taken as zero. From the figure, the
x,y,z components of Cie volume element position are easily written. Then the

	

quadratic approximations to the matrix[ L' it of components of It 	 H
coordinates can be written

r
COS C	 - a i S 111 ('11	 COS C1

IRHV) If	 (q ( r)	 s i It c ,	 , q	 ai cos c	 - I q(t)? + a?) Sir, (.i	 4 ...

0	 1),	 L	 p

UO+UI'U2+...

I
I

c

i

i

i	 I	 y

C	 TIP

I	 I '^ f MASS
HUB CENTER	 4

Of MASS /	 bi

I	 I	 C'I	 I
J	 rHUB COORDINATES IHI

Figure 3. Variables Specifying Position
of Wire Element i
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Similarly, the matrix , dR 'w idt 1 H J H of derivatives of x, y, z components is

- n + Si n c - 	 c^

dRHV /dt j HI H	 q	 ic y cos c	 - q(t) i f>l + a^a^) s i n c i	 r .. .

1) , 	0

U 1 i U2 + ...

C..mbining these results, the matrix f d&v /dtl I J H of components in II coordinates
can be written

1,10ov' dt1 1 I H c [ {yH2H^T 
+ i, l 

+ 62 
+ (WO + 

W, + W 2 ) (Uo + U1 + U 2 ) + ..

where superscript T indicates transpose, and the tilde indicates the matrix
equivalent of a cross product (if the components of W, are w , then the i, k
component of the square matrix W, is given by

v

3

^jkw i 	 ^
where e k

2 ( i -
l)(1 -k)(k-i)).

The quadratic approximation to the kinetic energy, per unit mass, of the
volume element is obtained by calcul Ming the dot product

2 
[dR oV /dtj I)H fdROV /dtj 

11

and retainhig only terms through second order. Multiniication by m ! and
substituting ' for q (see Fig. 2) gives the kinetic eneriy of t:_e i"' tip mass.
Mul"plication I,y the density per unit length of the wire, ; , and integrating q
from 0 to I gives the kinetic energy of the i 1h wire. Adding these results for
each wire and tip mass to the kinetic energy of the hub gives the
quadratic approximation of the total kinetic energy

7
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T - 2M ( "' ' YH , .	 + I 3w0(^3 + Al Az)

4

2 I,(fa 1 + ^' z) + 2 I 3(83) 2 + M

A

(wo + 803 )	 a

^	 1

a
	1 

M 
µ.2	 a^ + Mz 'H` ' 3 0

4	 44

	

- M I H 2 	(a2 + b?)+ 2 M3 u (a? + b?)

4

+ M2	 [- z
H 

( a
i
. s i n r

l 	 O i	 t
+ w a. cos c.) + y

H 
(e,	 i

. cos c - w .

	

0 ^	 ^
a s in c. )]

^	 1

4

+M 1 L{fJl (b^ sin(L, +c l )- w,, b l cos (,P+ci)]

i 
1

t
r'z(bi cos (Vi + c,) + w. b, sin( o+ c l )]} + ...

where

M 51 + 4m + 4mi

M3
(1,
	 3 m1 e2
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M2= 
(mt +1M)

M 1 - M3 + rM2

I 1 = IN1 , [4 (M t + 3t,) 
t2 

+ 8lm t + 2m1 r^ + 4(m t + m) r
J

I 3 - 1 H + C2 (mt + 3 m) ,t;2 + 4 (nit + 	ml r^ + 2 (ni t + 
m) r2J

I,, 12 , and I 3 are the three principle moments of inertia of the entire spacecraft
about the center of mass assuming it is rigid; 1,•1 1 , 111 2 , 1 113 are the correspond-
ing inertias for the hub; r and ^ are defined in Figure 2; m is the mass of a
wire, m, that of a tip mass, and m H that of the hub.

The Linearized Differential Equations

The linearized differential equations are obtained by applying Lagranges
equations to the above kinetic energy for each of the 14 generalized coordinates
X, Y, 7., B 1 , 0 , 03 , a,, b,. Note that X, Y, .Z are cyclic so that the equations
reduce to aT/aX = C 1 , aT/^ Y = C 2 , ?TP Z = C 3 , Ck all constant. Further-
more, we can chose the I axes so that there is no momentum of the spacecraft
relative to I at time t = 0. Assuming this has been done, the constant generalized
momenta are zero, C , = C2 = C 3 = 0.

Direct application of Lagranges equations yields linear differential equations
with variable coefficients. Some of this difficulty can be circumvented by keep-

'	 ing the xH , yH , and zH coordinates. We recognize that to a linear approximation

aT aT aX aT aY ?T ^)Z

.	 aXd aX aica aY aiti^ aZ a;4

J

=	 Cos h-aTsink+..•
aX	 aY

or aT/"4k H = 0, and similarly for y  and z}i .
9
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The linearized equations of motion are then

4

Mid - M2	s in c  + WO (t) a i cos c i ) = 0	 (2a)

i = 1

4

MyH + M2	 (ai cos c i - wo (t) ai sin c i ) = 0	 (2b)

=1

4

Mz H + M2 L bi = 0	 (2c)

i = 1-=-I

4

I1B1 + I 3 [µ'a (t)B2 +wo (t)B ] +M,L[(b i +wob i )sin(tP +c i ) -wobi cos(' +ciJ :7g2d)

i° 1

4

I 1 " 2 -I 3w '0 (t)Bl - M 1 L[(bi + wob i ) cos((p+ c i ) +wobi sin(g) +c i )] = 0	 (2e)
j=1

s

I 3 893 +M I ^a i =0	 (2f)

i=1

M3 'A i +M 1 DB3 +r M 2 w2a t +M2[(- H twoyH ) sinc i +(yH +wo i^) COS ci] =-Mlwo	 (29)

M3t>1 1 I iH 4%I%%^2b i +M 1 [(B1 +2wo02 )sin(4+c i )+(- Bz +2 wo ,11 ) cos(^+ c i )] =0 (2h)

where i = 1, 2, 3, 4.
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Mode Shapes and Natural Frequencies

We wish to find a change of variables which will uncouple the equations of
motion, and thus determine the normal modes of vibration and their natural
frequencies. Because of the spin of the spacecraft, we cannot actually expect
complete decoupling. Certain modes will be gyroscopically coupled. It might be
possible to determine the needed mode variables mathematically, but it is much
easier to appeal to physical intuition to guide us. Figure 4 presents eight ways
in which one would expect the system to oscillate. Associated with each mode
shape is a mode variable which should behave sinusoidally

a
	 HUB

4^

Figure 4. Vibrational Mode Shapes
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a 1 = 1(a1 +a 2 +a 3 +a4)	 01=g((b1+b2 +b3+b4)

a 2 = 1 (a1 -a 2 +a 3 -a4 )	 182 = 1 (b1-b2+b3-b4)

a3 -4( a 1 + a 2 - X1 3 - a4 )	 N3= 4(b1+ b2- b3 - b4)

a4 = 
4

(- a 1 +a2 +a3 -a4 )	 a4 =
4

(-b1 +b2+b3-b4)

Note that a 2 
and 82 

should be comp ,etely independent of other mode variables.

Also, a1 and ,31 equations will couple with the rotation and translation equations,
but will be independent of otter mode variables. However, we expect a 3 and
C1 4 to be gyroscopically coupled, and J3 , ^34 to be coupled with the precession

and nutation of the hub.

Setting wo = (eO , q, = wot, c  = (i - 1)77/2, and using mode variables, Eqs.
(2a-c) and ( 2f) become

xH =	 (2M2/M) [( a 3 + a4 ) + 'CO ("3 - a4)l

YH = - (2M2 /M) a3 - a4 ) - w0(a3 + a4 )1

t
iH = _ (4M 2 /M) ^1

a 8 = - (4M 1 %I 3 ) a1

Adding Eqs. (2g) for i = 1, 2, 3, 4 and using the above 83 , and similarly adding
Eqs. (2h) and using z  gives

M3 - (4Mi ! I3)J 
a1 

+ rM 2 w?a 1 = 0

[ M3 - (4M2 /M)] Al + M1 wo C 1 = 0

12
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Therefore, the natural frequencies associated with these modes, normalized by
the rotation rate (•: o , are

0 " , _ {rM2 /[M3 - (4Mi/I3)])1/2

QR - {M i / [M3 - (4M 2 M)] ) U 2

Similarly, taking the linear combinations of Eqs. (2g) and (2h) indicated by the 	 =
definitions of a 2 and ,32 give	 r

Qa2 = 
{r M2/M3) L'2

52 2 = {(N 1 'M3} t/2

and

a2
+ Q 2	 a2=0.	 2 +Sj2

J32 0 
062;32=0.

a2 0

Adding E.qs. (2g) as indicated by a 3 and a4 , and using xH, 3'H , gives two
E	 equations

[M 3 - (2. 2/M)1 a 3 + [4M2,'M1 C O L4 + [rM 2 + (2Mz/M)) W0a3 = 0

[ M3 - (2M2^M)] n 4 - [4M? /M] r.^^a3 + [rM 2 + (2M 2 /M)] a;oa4 = 0

with skew-symmetric gyroscopic coupling of the first derivatives. The normal-
ized frequencies associated with the roots of the characteristic equation for
this system are

i
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v2
^a3,-4- 2B ±(4	

lBZ
+C/

where

B = 4M 2 /(MM3 - 2M2)

C - (rMM 2 + 2M2) /(MM3 - 2M2)

To uncouple the equations for 53 and ,34 , obtained using Eqs. (2h), from
the remaining equations we must use Eqs. (2d) and (2e). Setting wo = wo,

^b = « O t, c  = (i - 1)-n12, and using (i3 and 34 to eliminate the b , the latter
equations still contain time varying coefficients which complicate the elimination
of 01 and c al from Eqs. (2h). However, we note that when wo = wo these two
angles are cyclic coordinates. We then define a rotation of the derivative
variables which will eliminate the explicit time dependence. Let

'^, = 01 cos(wot) + 02 sin ( wo t)

772 = - 02 sin(wo t) + 62 cos(wot)

and Eqs. (2d) and (2e) become

I1^1 + ( I3 - I 1 ) w O 772 + 2M 1 L(^3 + ^4 ) + wo (83 + 84 	 = 0

I 1 ^2 - ( I 3 - 1 1 ) w0 '7 1 - 2M 1 L ( 3 - ^4 ) + w0 ('63 - Q4 )) = 0

(Note that these same equations might have been obtained more directly by
using quasicoordinates w 1 , w2, w3 from the beginning.) The equations for /1
and 4 from Eqs. (2h) in terms of r'1 and 72 are

t0
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M3^3 + M 1 (,j0 /33 + 1 M 1 L(^ 1 -'12) + w6(7"1 + r7 2 )} = 0

M3 /34 + M 1 w0N4 + 2 M1 [(hl + ' 2 ) - WO (77 1 - TY] = 0

The naviral frequencies associated with 33 and /34 must be determined from the
characteristic equation of the above system of four simultaneous equations:

{(s2 +Pao) (5 2 f KW 2 ) - 2PN(s 2 + w0 ) ( s2 + K_62))2

+ {2PN(,eos(s 2 + ^'0) (K - 1)} 2 - 0

where

P - M 1 M3 .	 N- M1 ' I 1 .	 and K = ( I 3 - Id/I1.

It would appear that we must solve for the roots of an eighth order polynomial.
The normalized frequencies Q)33 64 

are the positive roots ., of this equation
when we set s = L o f2. However, we note that the equation is then of the form
x 2 - y 2 - (x - y) (x + y) so we can reduce the problem to finding the roots of two
fourth order equations

0' - P) (f2 2 - K2 ) - 2PN(f2 2 - 1) (0' - K)

± 2PNf2(f2 2 - 1) (K - 1) = 0

However, from the form of these equations, if 0' is a root of one, then - 2* is a
root of the other. Therefore, we need only solve for the four roots of one of the
gtiartics and take their absolute values. We can still do better if we observe that
the precession frequency (or its negative), f2 = I K i , is a root of the quartic. We
conclude that the four frequencies f2 3.04 associated with 33 and .34 mode
variables are

15
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and the absolute values of the three roots of

(0' - 1) [Q-- (K - 2PN)/(1 - 2PN)] - k(fl + K) = 0

where k = (P - 1)/(1 - 2PN). Approximate values for these three roots can be
obtained easily using root locus techniques as shown below.

Application of Results to IMP-J Spacecraft

The parameters of the IMP-J spacecraft are: M t = 3 gms, m = 100 gms,
f = 200 ft, r = 2 ft, M = 19.37 slugs, I H3 - 117 slug ft' (hard booms deployed),
and the transverse inertias are approximated by 1 Fil = 76 slug ft 2. Observe that

P 1 } (r	 mi+gym / Cm c + 3 m

C)

and is near unity (actually 1.01459) because of the ratio (rA ). The factor k is
then small (0.0539). The above cubic equation can be written as

1=
	 k(Q+K)

( 02 - 1) (Q - G)

where G = (K - 2PN)/(1 - 213N). It is thus in the form needed for a root locus
plot; there is one zero at -K, and three poles at tl, and G, and we are

i	 interested in the roots for a small negative gain (-k). For the IMP-J K = 0.875,
G 0.540, and the root locus plot is shown in Figure 5. An approximate value
for each root can be obtained by calculating the root sensitivity at k = 0, i.e.
finding the rate of change of the root location with k at k = 0, and extrapolating
along the tangent:

 [d ()
s )(k) ~ f1 ( 0 ) + d  (o) k

16
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Figure 5. Root Locus Plot

where

&	 P + K
dk	 351 2 - Nil -1-k

As a check on the result, the value of k corresponding to the approximate root
can be calculated by substitution in the root locus equation after solvin g it for
k. If the value is not as close as desired, iterating by making a small change
in ,) and recalculating k quickly gives the needed result.

Using this method to obtain the frequencies for 0,33 34 and the formulas of
the previous sect. ^n for the other modes gives the following natural frequencies
normalized by the spin rate 0:

D al - 0.2563

flat = 0.1208

Qa3 a4 - 0.1236 and 0.1225

Ql31 = 1.007819

Ql 92 - 1-007267

0P3,B4 - 0.8754. 1.002215, 1.09185. and 0.4499.

17



For a spin of 23 rpm the period for the a, mode is roughly 10 sec., while the

29 a
3 and '4 modes all give approximately 21 sec. The out of plane modes give

periods between 2 and 3 sec. with one exception of 5.8 sec. associated with one of
the f '3• F'4 frequencies.

Fundamental Spin-Up Equation: Analytic Solution

We now turn our attention to the dynamic behavior of the satellite during
the spin-up operation. From physical considerations it is clear that the mode

1 is the most directly affected by the spin-up torque. We therefore examine
this mode first.

The differential equation for . t i . is obtained by taking one fourth the sum of
the four Eqs. (2g) and eliminating 86 4 3 using Eq. (2f). The wo (t) is taken as
W 0 + (Q /I 3 )t. The result is

ul + i)' 1 2 ^2 (1 + Et) 2 a l - _E(uA/rM2) `12al

where E = Q/(I 3 C.. ). The spin-up torque for the IMP-J is 0.96 ft. lbs., which is
small compared to the total vehicle inertia 13, and therefore E is a small
number. The ^.,, is the natural frequency normalized by the spin rate before
the start of the spin-up, :.:^. The differential equation can be written in an alter-
nate form by defining a new time variable - and letting prime indicate differ-
entiation with respect to -

T= 1 +Et

a'1 + DQ12 T2 a, = _ E [MI'(-orM 2)] f?a12	 (3)

where n,, I _ 021 ,. () 'E (we will use analogous definitions for all other modes).
Ikspite the simple appearance of this equation, it is difficult to obtain the solu-
tion in a form which is easily applied.

Using the change of variables from a 1 , T to J, , where

V

18



r

J ^

4

r ai

F 2 al T2

.1(f) = ( T )' 1/2 a 1 Cr)

the differential equation is transformed to

	

f^ 
dF 2 '	 d^ ' 

C.2	
lfi] J = _` 1 2 i ^l 5 '4 lMl l/( . o rM 2 )1 (x)3/4

The complementary function for this equation is a linear combination of Bessel
functions of order ±1/4, and hence the complementary function for a l is

)

	

a	 3T ,1	 ^^	 i 2 + c	 J	 1 S1	 7 2	 (4)clc	 1	 1 4 (2	 ^1	 2	 -1'4 (2	 rt1

(c 1 and c  arbitrary constants). Bessel function tables for these fractional
orders can be found in 1,11.

To obtain the particular solution, note that the Struve function of order v,
11, (f), is a particular solution of

d

2

	 4(
2^z	 J +	 dJ + (^ 2 - 1,2)J

df2	 df	
_

vn l' (v +

(see ' 21). By maMng the appropriate adjustment of constants the particular
solution for : 1 can be written as

^Ir	 -E (fl at /4) s ' 4 3r 1'^ ) M 1 /(ao rM Z ) 3; H_1.4 
`2 ^al'2)	 (5)
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Tables of Struve functions of the needed order are not readily !lvailable. One
can obtain an expression for H__ ► 4 in terms of a product of a fractional power of

tines an infinite series in by using the method of F roebenius on the differen-
tial equation for H_ 1 A ,i 21. The resulting particular solution for a is

.ni^
1

_	 4	 1 (?	 r
1P	 o.OrM2	 4 al

_ 

2	 1	 ( - I)k
4 	

2)
Ik

	

k+ 3 i k	 5k o 
r \	 2/ (	 4

(6)

which represents an entire function.

Note that -%, is a large-number, and that the values of r of interest are
greater than 1. Hence, although the above series coverges for all -, the number
of terms needed to calculate a good approximation to a is quite large. A
series with improved convergence properties can be formed using a Bessel
function expansion. For any value of Fi not equal to a negative integer or zero
121

1	
µ _
	 (µ + 2k) f (µ + k)

k=0

Then the driving term to the Bessel equation form of our differential equation
can be rewritten giving

	

r	 1	 (2k+ 1)Fk+3/
52 d:2 ;dJ+ 1

2— 
1] J = - E (S1 )5/,	

M1	

T

	

\4 \4 J 	 +d^^	 ds L	 ^rMk3:4 2k202 

Substitute a solution of the form J = ?: a^ J3 
4 

+ 2^^(,^, and observe that the
left hand side of the equation equals [µ 2 - 1/161 J, when J._ is substituted for
J. The ekfficients a„ are obtained immediately by equating coefficients of
Bessel functions of like orders

20



^	 _ — , 
(ljnr )S.'1 Mr	

(2k t 
4) 

f 

(k 
+ 

4) ^^	 1 - , 2 

1P `	
3 2a, rM2

	\--- 3	 \ 2	 1	 JJ•4•2k (2 d al )
	 ( 7 )

0	 k-„ k	 _, ')k	 _
1(4	 1(]

r

1

i

'Phis expression represents the exact solution and has better convergence prop-
erties than the power series solution. However, we will find that for most pur-
poses an approximate solution in the form of an asymptotic expansion is most
useful.

A"KII Approximation

The complementary f,,, ._don 'L1,, fount] above appears not (Ay in the (1,
MA10, but in other modes as - yell. For purposes of making rapid calculations,
as well as to give a somewhat better intuitive feel for the mode response, an
approximate solution is generated by the WKI3 method , 3i.

The WKB functions

Wt(T)	 ^f(T)^`1 4 ^ 'Kp 3 i 
J 

/f ) a;l
1

are easil y shown to be exact solutions to

N't t c f(7) + g ( r )) W, i 0

1 f 11_ 5	 f_, 2g(T) 
- 4 f	 lei f

and therefore approximate solutions to : 1 + f( , ) 
'1 

0 provided g( 7) is small
corlpared to f( ). For the present problem we can take

N' =	 (1 3 r) exp 
L 

i 2 P a1T2,

li

t",
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A-

t

cind the complementary fun ctioii can then be written as

ri i, (-r)	 A "I) cos ( l S2Qi'T2 + 
h/2

wnere A and are arbitrary constants. The function g(r) = -3/(47 2 ) is smaa
compared to f( ) _ S2 2 r2 because of the presence of a factor 1/r in o" .

Applying the well known asymptotic form (for large r) of the Bessel runc-
tions would give the same result, and therefore accuracy is good for prt-nerly
chosen when -r is large. The error in this WKB solution when it is c,xried
in to small values of 7 can be investigated by writting

ale C,(r) W.(T) + CO- ) W-(T)

where the variation of the constants C } = (A/2)e +i F accounts for the difference
between the true solution and the WKB approximation. The rate of change of Ct

s	 with - is given by [3)

dC

`	
tt - 

f	 ;i	 {Ct + Cs exp [T i f1QiT21 }
8S2Qir3

If the Ct do not change inuch, we can calculate the change ^C. by integrating

t3iActiE
AC: = J	 f1 + exp[T ii2 Qi -r 2 + 2i SJ ) dr

1	 1617air3

treating as a constant. The second term in the brackets is bounded by one
in mag Atu.le, so that we obtain an approximate expression

Act /C!; < 3/(867.1) = 3e/(8wOQ.l)

22
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Gis

showing that the relative error is small even for as small as = 1. Thus, no
significant phase error in ` accumulates in our approximate solution even after
an arbitrarily large number of wavelengths.

Asymptotic Expansion Solution

An approximation to the particular solution a lp can be obtained in the form
of an asymptotic expansion. We formally substitute

.,i lp - Tj Cn.T - n

n=0

into the differential equation and solve for the coefficients c ,, . By the ratio test,
the resulting series is seen to diverge for all finite r . However, for properly
chosen N, the series truncated to N terms forms an asymptotic expansion which
will be shown to give good accuracy

n- 1F
N (-=)n T1pOk+2)(4k+3)

EMl	
1 +^ _	

k = 0	
--	

(9)

n., rM2T2	
n- 1
	

n2nT4nal

Denote the right hand side of this equation by aIN, and determine the differential
equation for which it is a particular solution by calculating a" + -r -r 2a

It is seen that the forcing function differs from the desired forcing function by
the addition of a term depending on T-4(N+1) . Then the differential equation
satisfied by the error, Aa = a 1p - aIN' is found by subtracting the equation for
`l IN 

from Eq. (3)

I

i

QCxn + 2 7-2La

	

	
EM  i )N 	 1

(^O r M2

N

TT (4k + 2) (4k + 3)
k=0

2N T4N-t 4
al

The error in the asymptotic expansion is that particular solution L^a satisfying
to = Aa' = 0 at 7 = 1. Denote the driving function in the above equation by F(T ).
Then the desired particular solution is found by variation of parameters to be

23
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r
4	 ^

}j	 S)

T

Da -
fl

'Pz(T) -^1(T)(p2( :) ] tF()^W(S)] d-:

where O 1 and 02 are the two linearly independent solutions to the homogeneous
equation

(	 2^1 - ^.T1,4 \2 SIa1T	 P2 _ 37 ,T_ 1 ,
4 (21 T 2)

and W is the Wronskian. Then ,^',1 + T2 2 T 2(f 1 = 0, and ^Z + S1Q 1 T 2 2 = 0;
multiplying the first by 

¢t2 , the second by 4, 1 , and subtracting gives an expres-
sion which when integrated shows that the Wronskian is constant. Let
1/2 1a 1 T 2 = 1, and use the fact that the Wronskian of J , (z), J_„ (z) is -2 sin
(vn) /(n z) from [21, to determine the constant

(
1-	

l	
1-	 1-	 1-	

1W - ^«1 2 11 '4 \2 ° IT2/ 1,1.4 (2 S^a1T2) - J 1.'4 (2 a niT2) _1_
14 (2 '^a1T2)J

= 21.T 1 , 4 (1) 1,, 4 (1) - .T1 ,'4 ( 1 ) .T_1,14(1)]

= 23 2/7►

The Bessel functions are bounded by [2]

11/4

1/4(x)1	
/[1

s	 2 X I 	 f 1 4)^

Therafore, the error in the asymptotic expansion solution is bounded by
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1

na^ 5 
J	

[^^D^(5)^ 102 ( T )l + 1 1^ 1 ( T ) j 14'2 (e)1 j [IF(f )I Awj ds
1

T

V 'r 1 a C2-1"	 •1 -1. a (12 -1'`)

+ I 1 a \2 i1al T2) I	 1-1 ,a (2 O ^ 12)	
I F (5 )l /W) c1=

N
e 2N+ 1. 25 „ M 1 ]7 (4k + 2) (4k + 3)

s	 k=0

	

1	 I -	 1

	

02N + 1. 25rM2Q2a1+0 25x'(3)

	

4N+ 2.5	 TaN +2.5
4 /I

+ VT
	

1 - —1 -4N_7_N+ 3	 TaN + 3

f

1	 '

Because , is quite small in the present application it is found that using
three terms in the asymptotic expansion gives very good accuracy.

Planar Mode Response to Spin-Up

Because the spin-up maneuver is a planar one, we now obtain the dynamic
response of the remaining planar modes under the spin-up torque. Taking the
appropriate linear combination of Eqs. (2g), letting w ) (t) = o + (Q/I 3 )t, and
changing from t to T as the independent variable gives

a2 + Slat -r 2 a2 = 0

and the corresponding solution is

a2 = C3^/J,, a (2 S1 a2 ^ 2) +Ca 3T
J_1/4 (2 ^a2'r2)
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where

i

f

1	 l

i

i

1	 ^

.	 1

a3 + Rra4 + ^'T Z a3 + 2 8a4 - Q

a4 - R T a3 + CT 2 a4 - 
2 

Hai = 0

i

I'

A

where P,, 2 = ^a2 ao ^e . The differential equations for the coupled modes a3 and

a4 are found by taking the appropriate linear combinations of Eqs. (2g), using
Eqs. (2a) and (2b) with c, = (i - 1) n12 and the above w o (t), and changing from

t to 7

4M2a'o

E (MM3 - 2M 2 )

c 
^o (rMM2 + 2M2)

=
E 2 (MM3 - 2M2)

Note that this time there is not only gyroscopic coupling of the first derivatives,
but coupling in the undifferentiated terms as well. In order to obtain an analytic
solution to this system of equations, use a complex valued change of variables
to write the system as a single equation

i
a"- i8Ta'+	 7-2-1 i1^^a =0

r

#	
l	 2

S	 ,

where a = a3 + i a 4 . A second change of variables a(r) = v( T)p(r ), where

P( T ) = exp 14 i8-i 21

is chosen to eliminate the first derivative term in the differential equation,
gives

V" (T)	 I
4 

92 t	 T2V(T) = 0

^E



9

i
6

i

-0

which is the fundamental equation which has already been solved. Then the solu-
tions for a 3 and as , in terms of real valued arbitrary constants, are both of the
form

pp	 pp	
_	 1./ 2

a3 . as	 l'S Cos 
( 41 

I,T) i ( 'h Slfl
(4l 

1^T 2) vT 11 4
(
1 

(14 
^ 2 } ^^^	 T 2)

(10)

+ 
L`

, ros(4 417 2)	 cR s1nl4	
2)] 

V . 1/4 (2 (4 
62 + )1 2 TZ)

A simple calculation shows that the WKB approximation is

t

i

f

a3 . as	
Al 

cos( f1^3 T 2 + 1 1 + AZ cos	 sZ Qa T 2 + S2
T	 ^ T

where A,, A 2 , 8 1 , and b2 are arbitrary constants determined by initial
conditions.

Although this section is concerned with the planar modes, it is interesting
to note that two of the out of plane modes are governed by the same fundamental
spin-up equation. By a derivation closely paralleling the deviation of the mode
frequencies for 81 and 32 , the spin-up equations are found to be

+

	

R"	 12 T 2 r3 =0

	

1	 ,3 1	 1

aZ + fQZT2,s = 0

with the corresponding solutions

161 = CC) IT.11 a (17 f251'2) + C 10"/' ,1-1!4 (2 nSIT2)

27
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^32 - C 11^1 1/4 (2 SZ
32 T 21 + C12^ .1 -. 1/4 (2 ^132T2)
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