9,296 research outputs found

    First prototype of a silicon tracker using an artificial retina for fast track finding

    Get PDF
    We report on the R\&D for a first prototype of a silicon tracker based on an alternative approach for fast track finding. The working principle is inspired from neurobiology, in particular by the processing of visual images by the brain as it happens in nature. It is based on extensive parallelisation of data distribution and pattern recognition. In this work we present the design of a practical device that consists of a telescope based on single-sided silicon detectors; we describe the data acquisition system and the implementation of the track finding algorithms using available digital logic of commercial FPGA devices. Tracking performance and trigger capabilities of the device are discussed along with perspectives for future applications.Comment: 9 pages, 7 figures, Technology and Instrumentation in Particle Physics 2014 (TIPP 2014), conference proceeding

    Laser induced fluorescence for axion dark matter detection: a feasibility study in YLiF4_4:Er3+^{3+}

    Get PDF
    We present a detection scheme to search for QCD axion dark matter, that is based on a direct interaction between axions and electrons explicitly predicted by DFSZ axion models. The local axion dark matter field shall drive transitions between Zeeman-split atomic levels separated by the axion rest mass energy mac2m_a c^2. Axion-related excitations are then detected with an upconversion scheme involving a pump laser that converts the absorbed axion energy (\sim hundreds of μ\mueV) to visible or infrared photons, where single photon detection is an established technique. The proposed scheme involves rare-earth ions doped into solid-state crystalline materials, and the optical transitions take place between energy levels of 4fN4f^N electron configuration. Beyond discussing theoretical aspects and requirements to achieve a cosmologically relevant sensitivity, especially in terms of spectroscopic material properties, we experimentally investigate backgrounds due to the pump laser at temperatures in the range 1.94.21.9-4.2 K. Our results rule out excitation of the upper Zeeman component of the ground state by laser-related heating effects, and are of some help in optimizing activated material parameters to suppress the multiphonon-assisted Stokes fluorescence.Comment: 8 pages, 5 figure

    The artificial retina processor for track reconstruction at the LHC crossing rate

    Get PDF
    We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency.Comment: 4th draft of WIT proceedings modified according to JINST referee's comments. 10 pages, 6 figures, 2 table

    Simulation and performance of an artificial retina for 40 MHz track reconstruction

    Get PDF
    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40MHz40\,\rm MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.Comment: Final draft of WIT proceedings modified according to JINST referee's comment

    The artificial retina for track reconstruction at the LHC crossing rate

    Full text link
    We present the results of an R&D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40MHz40\,\rm MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices.Comment: 3 pages, 3 figures, ICHEP14. arXiv admin note: text overlap with arXiv:1409.089

    Heterobimetallic conducting polymers based on salophen complexes via electrosynthesis

    Get PDF
    In this work, we report the first electrochemical synthesis of two copolymeric bimetallic conducting polymers by a simple anodic electropolymerization method. The adopted precursors are electroactive transition metal (M = Ni, Cu and Fe) salophen complexes, which can be easily obtained by direct chemical synthesis. The resulting films, labeled poly-NiCu and poly-CuFe, were characterized by cyclic voltammetry in both organic and aqueous media, attenuated total reflectance Fourier transform infrared spectroscopy, UV-vis spectroscopy, scanning electron microscopy, and coupled energy dispersive X-ray spectroscopy. The films are conductive and exhibit great electrochemical stability in both organic and aqueous media (resistant over 100 cycles without significant loss in current response or changes in electrochemical behavior), which makes them good candidates for an array of potential applications. Electrochemical detection of ascorbic acid was performed using both materials

    The effects of nocturnal hemodialysis compared to conventional hemodialysis on change in left ventricular mass: Rationale and study design of a randomized controlled pilot study

    Get PDF
    BACKGROUND: Nocturnal hemodialysis (NHD) is an alternative to conventional three times per week hemodialysis (CvHD) and has been reported to improve several health outcomes. To date, no randomized controlled trial (RCT) has compared NHD and CvHD. We have undertaken a multi-center RCT in hemodialysis patients comparing the effect of NHD to CvHD on left ventricular (LV) mass, as measured by cardiac magnetic resonance imaging (cMR). METHODOLOGY/DESIGN: All patients in Alberta, Canada, expressing an interest in performing NHD are eligible for the study. Patients enrolled in the study will be randomized to either NHD or CvHD for a six month period. All patients will have a full clinical assessment, including collection of biochemical and cMR data at baseline and at 6 months. Both groups of patients will be monitored biweekly to optimize blood pressure (BP) to a goal of <130/80 mmHg post-dialysis using a predefined BP management protocol. The primary outcome is change in LV mass, a surrogate marker for cardiac mortality, measured at baseline and 6 months. The high sensitivity and reproducibility of cMR facilitates reduction of the required sample size and the time needed between measures compared with echocardiography. Secondary outcomes include BP control, anemia, mineral metabolism, health-related quality of life, and costs. DISCUSSION: To our knowledge, this study will be the first RCT evaluating health outcomes in NHD. The impact of NHD on LV mass represents a clinically important outcome which will further elucidate the potential benefits of NHD and guide future clinical endpoint studies

    The artificial retina for track reconstruction at the LHC crossing rate

    Get PDF
    We present the results of an R&amp;D study for a specialized processor capable of precisely reconstructing events with hundreds of charged-particle tracks in pixel and silicon strip detectors at 40 MHz, thus suitable for processing LHC events at the full crossing frequency. For this purpose we design and test a massively parallel pattern-recognition algorithm, inspired to the current understanding of the mechanisms adopted by the primary visual cortex of mammals in the early stages of visual-information processing. The detailed geometry and charged-particle's activity of a large tracking detector are simulated and used to assess the performance of the artificial retina algorithm. We find that high-quality tracking in large detectors is possible with sub-microsecond latencies when the algorithm is implemented in modern, high-speed, high-bandwidth FPGA devices
    corecore