34,524 research outputs found

    Identification of a specific inhibitor for DNA ligase I in human cells.

    Full text link

    Possible role of 3He impurities in solid 4He

    Full text link
    We use a quantum lattice gas model to describe essential aspects of the motion of 4He atoms and of 3He impurities in solid 4He. This study suggests that 3He impurities bind to defects and promote 4He atoms to interstitial sites which can turn the bosonic quantum disordered crystal into a metastable supersolid. It is suggested that defects and interstitial atoms are produced during the solid 4He nucleation process where the role of 3He impurities (in addition to the cooling rate) is known to be important even at very small (1 ppm) impurity concentration. It is also proposed that such defects can form a glass phase during the 4He solid growth by rapid cooling.Comment: 4 two-column Revtex pages, 4 figures. Europhysics Letters (in Press

    Fermi surface evolution through a heavy fermion superconductor-to-antiferromagnet transition: de Haas-van Alphen effect in Cd-substituted CeCoIn5_5

    Full text link
    We report the results of de-Haas-van-Alphen (dHvA) measurements in Cd doped CeCoIn5_5 and LaCoIn5_5. Cd doping is known to induce an antiferromagnetic order in the heavy fermion superconductor CeCoIn5_5, whose effect can be reversed with applied pressure. We find a slight but systematic change of the dHvA frequencies with Cd doping in both compounds, reflecting the chemical potential shift due to the addition of holes. The frequencies and effective masses are close to those found in the nominally pure compounds with similar changes apparent in the Ce and La compounds with Cd substitution. We observe no abrupt changes to the Fermi surface in the high field paramagnetic state for xxcx \sim x_c corresponding to the onset of antiferromagnetic ordering at H=0 in CeCo(In1x_{1-x}Cdx_x)5_5. Our results rule out ff-electron localization as the mechanism for the tuning of the ground state in CeCoIn5_5 with Cd doping

    Ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice: A variational study based on entangled-plaquette states

    Full text link
    We study, on the basis of the general entangled-plaquette variational ansatz, the ground-state properties of the spin-1/2 antiferromagnetic Heisenberg model on the triangular lattice. Our numerical estimates are in good agreement with available exact results and comparable, for large system sizes, to those computed via the best alternative numerical approaches, or by means of variational schemes based on specific (i.e., incorporating problem dependent terms) trial wave functions. The extrapolation to the thermodynamic limit of our results for lattices comprising up to N=324 spins yields an upper bound of the ground-state energy per site (in units of the exchange coupling) of 0.5458(2)-0.5458(2) [0.4074(1)-0.4074(1) for the XX model], while the estimated infinite-lattice order parameter is 0.3178(5)0.3178(5) (i.e., approximately 64% of the classical value).Comment: 8 pages, 3 tables, 2 figure

    Quantum field and uniformly accelerated oscillator

    Full text link
    We present an exact treatment of the influences on a quantum scalar field in its Minkowski vacuum state induced by coupling of the field to a uniformly accelerated harmonic oscillator. We show that there are no radiation from the oscillator in the point of view of a uniformly accelerating observer. On the other hand, there are radiations in the point of view of an inertial observer. It is shown that Einstein-Podolsky-Rosen (EPR) like correlations of Rindler particles in Minkowski vacuum states are modified by a phase factor in front of the momentum-symmetric Rindler operators. The exact quantization of a time-dependent oscillator coupled to a massless scalar field was given.Comment: 28 pages, LaTe

    Discovery of Griffiths phase in itinerant magnetic semiconductor Fe_{1-x}Co_xS_2

    Get PDF
    Critical points that can be suppressed to zero temperature are interesting because quantum fluctuations have been shown to dramatically alter electron gas properties. Here, the metal formed by Co doping the paramagnetic insulator FeS2_2, Fe1x_{1-x}Cox_xS2_2, is demonstrated to order ferromagnetically at x>xc=0.01±0.005x>x_c=0.01\pm0.005 where we observe unusual transport, magnetic, and thermodynamic properties. We show that this magnetic semiconductor undergoes a percolative magnetic transition with distinct similarities to the Griffiths phase, including singular behavior at xcx_c and zero temperature.Comment: 10 pages, 4 figure
    corecore