26,592 research outputs found
Spin relaxation in mesoscopic superconducting Al wires
We studied the diffusion and the relaxation of the polarized quasiparticle
spins in superconductors. To that end, quasiparticles of polarized spins were
injected through an interface of a mesoscopic superconducting Al wire in
proximity contact with an overlaid ferromagnetic Co wire in the single-domain
state. The superconductivity was observed to be suppressed near the
spin-injecting interface, as evidenced by the occurrence of a finite voltage
for a bias current below the onset of the superconducting transition. The spin
diffusion length, estimated from finite voltages over a certain length of Al
wire near the interface, was almost temperature independent in the temperature
range sufficiently below the superconducting transition but grew as the
transition temperature was approached. This temperature dependence suggests
that the relaxation of the spin polarization in the superconducting state is
governed by the condensation of quasiparticles to the paired state. The spin
relaxation in the superconducting state turned out to be more effective than in
the normal state.Comment: 9 pages, 8 figure
On the shape of spectra for non-self-adjoint periodic Schr\"odinger operators
The spectra of the Schr\"odinger operators with periodic potentials are
studied. When the potential is real and periodic, the spectrum consists of at
most countably many line segments (energy bands) on the real line, while when
the potential is complex and periodic, the spectrum consists of at most
countably many analytic arcs in the complex plane.
In some recent papers, such operators with complex -symmetric
periodic potentials are studied. In particular, the authors argued that some
energy bands would appear and disappear under perturbations. Here, we show that
appearance and disappearance of such energy bands imply existence of nonreal
spectra. This is a consequence of a more general result, describing the local
shape of the spectrum.Comment: 5 pages, 2 figure
Collimated Jet or Expanding Outflow: Possible Origins of GRBs and X-Ray Flashes
We investigate the dynamics of an injected outflow propagating in a
progenitor in the context of the collapsar model for gamma-ray bursts (GRBs)
through two dimensional axisymmetric relativistic hydrodynamic simulations.
Initially, we locally inject an outflow near the center of a progenitor. We
calculate 25 models, in total, by fixing its total input energy to be 10^{51}
ergs s^{-1} and radius of the injected outflow to be cm while
varying its bulk Lorentz factor, , and its specific
internal energy, . The injected outflow propagates
in the progenitor and drives a large-scale outflow or jet. We find a smooth but
dramatic transition from a collimated jet to an expanding outflow among
calculated models. The maximum Lorentz factor is, on the other hand, sensitive
to both of and ; roughly . Our finding will explain a smooth transition between the
GRBs, X-ray rich GRBs (XRRs) and X-ray Flashes (XRFs) by the same model but
with different values.Comment: Comments 51 pages, 21 figures. accepted for publication in ApJ high
resolution version is available at
http://www.mpa-garching.mpg.de/~mizuta/COLLAPSAR/collapsar.htm
Recommended from our members
Aseptic Barriers Allow a Clean Contact for Contaminated Stethoscope Diaphragms.
Objective:To determine whether a single-use stethoscope diaphragm barrier surface remains aseptic when placed on pathogen-contaminated stethoscopes. Methods:From May 31 to August 5, 2019, we tested 2 separate barriers using 3 different strains of 7 human pathogens, including extended-spectrum β-lactamase-producing Escherichia coli, methicillin-resistant Staphylococcus aureus, and vancomycin resistant Enterococcus faecium. Results:For all diaphragms with either of the 2 barriers tested, no growth was recorded for any of the pathogens. Stethoscopes with aseptic barriers remained sterile for up to 24 hours. These single-use barriers also provided aseptic surfaces when stethoscope diaphragms were inoculated with human specimens, including saliva, stool, urine, and sputum. Conclusion:Disposable aseptic diaphragm barriers may provide robust and efficient solutions to reduce transmission of pathogens via stethoscopes
Subdiffusion and lateral diffusion coefficient of lipid atoms and molecules in phospholipid bilayers
We use a long, all-atom molecular dynamics (MD) simulation combined with
theoretical modeling to investigate the dynamics of selected lipid atoms and
lipid molecules in a hydrated diyristoyl-phosphatidylcholine (DMPC) lipid
bilayer. From the analysis of a 0.1 s MD trajectory we find that the time
evolution of the mean square displacement, [\delta{r}(t)]^2, of lipid atoms and
molecules exhibits three well separated dynamical regions: (i) ballistic, with
[\delta{r}(t)]^2 ~ t^2 for t < 10 fs; (ii) subdiffusive, with [\delta{r}(t)]^2
~ t^{\beta} with \beta<1, for 10 ps < t < 10 ns; and (iii) Fickian diffusion,
with [\delta{r}(t)]^2 ~ t for t > 30 ns. We propose a memory function approach
for calculating [\delta{r}(t)]^2 over the entire time range extending from the
ballistic to the Fickian diffusion regimes. The results are in very good
agreement with the ones from the MD simulations. We also examine the
implications of the presence of the subdiffusive dynamics of lipids on the
self-intermediate scattering function and the incoherent dynamics structure
factor measured in neutron scattering experiments.Comment: Submitted to Phys. Rev.
Screened hybrid functional applied to 3d^0-->3d^8 transition-metal perovskites LaMO3 (M=Sc-Cu): influence of the exchange mixing parameter on the structural, electronic and magnetic properties
We assess the performance of the Heyd-Scuseria-Ernzerhof (HSE) screened
hybrid density functional scheme applied to the perovskite family LaMO3
(M=Sc-Cu) and discuss the role of the mixing parameter alpha (which determines
the fraction of exact Hartree-Fock exchange included in the density functional
theory (DFT) exchange-correlation functional) on the structural, electronic,
and magnetic properties. The physical complexity of this class of compounds,
manifested by the largely varying electronic characters
(band/Mott-Hubbard/charge-transfer insulators and metals), magnetic orderings,
structural distortions (cooperative Jahn-Teller like instabilities), as well as
by the strong competition between localization/delocalization effects
associated with the gradual filling of the t_2g and e_g orbitals, symbolize a
critical and challenging case for theory. Our results indicates that HSE is
able to provide a consistent picture of the complex physical scenario
encountered across the LaMO3 series and significantly improve the standard DFT
description. The only exceptions are the correlated paramagnetic metals LaNiO3
and LaCuO3, which are found to be treated better within DFT. By fitting the
ground state properties with respect to alpha we have constructed a set of
'optimum' values of alpha from LaScO3 to LaCuO3: it is found that the 'optimum'
mixing parameter decreases with increasing filling of the d manifold (LaScO3:
0.25; LaTiO3 & LaVO3: 0.10-0.15; LaCrO3, LaMnO3, and LaFeO3: 0.15; LaCoO3:
0.05; LaNiO3 & LaCuO3: 0). This trend can be nicely correlated with the
modulation of the screening and dielectric properties across the LaMO3 series,
thus providing a physical justification to the empirical fitting procedure.Comment: 32 pages, 29 figure
Identification of BRCA1/2 germline mutations by integrated approach
This journal suppl. entitled: Primary Therapy of Early Breast Cancer: 14th St.Gallen International Breast Cancer ConferencePoster Presentation: P140postprin
- …