40,113 research outputs found

    Noncommutative Einstein-Maxwell pp-waves

    Get PDF
    The field equations coupling a Seiberg-Witten electromagnetic field to noncommutative gravity, as described by a formal power series in the noncommutativity parameters θαβ\theta^{\alpha\beta}, is investigated. A large family of solutions, up to order one in θαβ\theta^{\alpha\beta}, describing Einstein-Maxwell null pp-waves is obtained. The order-one contributions can be viewed as providing noncommutative corrections to pp-waves. In our solutions, noncommutativity enters the spacetime metric through a conformal factor and is responsible for dilating/contracting the separation between points in the same null surface. The noncommutative corrections to the electromagnetic waves, while preserving the wave null character, include constant polarization, higher harmonic generation and inhomogeneous susceptibility. As compared to pure noncommutative gravity, the novelty is that nonzero corrections to the metric already occur at order one in θαβ\theta^{\alpha\beta}.Comment: 19 revtex pages. One refrence suppressed, two references added. Minor wording changes in the abstract, introduction and conclusio

    Universality in the off-equilibrium critical dynamics of the 3d3d diluted Ising model

    Full text link
    We study the off-equilibrium critical dynamics of the three dimensional diluted Ising model. We compute the dynamical critical exponent zz and we show that it is independent of the dilution only when we take into account the scaling-corrections to the dynamics. Finally we will compare our results with the experimental data.Comment: Final Version, 5 Latex pages (RevTeX) plus 3 eps figure

    Mapping the circumstellar SiO maser emission in R Leo

    Full text link
    The study of the innermost circumstellar layers around AGB stars is crucial to understand how these envelopes are formed and evolve. The SiO maser emission occurs at a few stellar radii from the central star, providing direct information on the stellar pulsation and on the chemical and physical properties of these regions. Our data also shed light on several aspects of the SiO maser pumping theory that are not well understood yet. We aim to determine} the relative spatial distribution of the 43 GHz and 86 GHz SiO maser lines in the oxygen-rich evolved star R Leo. We have imaged with milliarcsecond resolution, by means of Very Long Baseline Interferometry, the 43 GHz (28SiO v=1, 2 J=1-0 and 29SiO v=0 J=1-0) and 86 GHz (28SiO v=1 J=2-1 and 29SiO v=0 J=2-1) masing regions. We confirm previous results obtained in other oxygen-rich envelopes. In particular, when comparing the 43 GHz emitting regions, the 28SiO v=2 transition is produced in an inner layer, closer to the central star. On the other hand, the 86 GHz line arises in a clearly farther shell. We have also mapped for the first time the 29SiO v=0 J=1-0 emission in R Leo. The already reported discrepancy between the observed distributions of the different maser lines and the theoretical predictions is also found in R Leo.Comment: accepted for publication in A&

    Energy partition and segregation for an intruder in a vibrated granular system under gravity

    Get PDF
    The difference of temperatures between an impurity and the surrounding gas in an open vibrated granular system is studied. It is shown that, in spite of the high inhomogeneity of the state, the temperature ratio remains constant in the bulk of the system. The lack of energy equipartition is associated to the change of sign of the pressure diffusion coefficient for the impurity at certain values of the parameters of the system, leading to a segregation criterium. The theoretical predictions are consistent with previous experimental results, and also in agreement with molecular dynamics simulation results reported in this paper.Comment: To appear in Phys. Rev. Let

    Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities

    Full text link
    In the present paper we introduce a way of identifying quantum phase transitions of many-body systems by means of local time correlations and Leggett-Garg inequalities. This procedure allows to experimentally determine the quantum critical points not only of finite-order transitions but also those of infinite order, as the Kosterlitz-Thouless transition that is not always easy to detect with current methods. By means of simple analytical arguments for a general spin-1/21 / 2 Hamiltonian, and matrix product simulations of one-dimensional XXZX X Z and anisotropic XYX Y models, we argue that finite-order quantum phase transitions can be determined by singularities of the time correlations or their derivatives at criticality. The same features are exhibited by corresponding Leggett-Garg functions, which noticeably indicate violation of the Leggett-Garg inequalities for early times and all the Hamiltonian parameters considered. In addition, we find that the infinite-order transition of the XXZX X Z model at the isotropic point can be revealed by the maximal violation of the Leggett-Garg inequalities. We thus show that quantum phase transitions can be identified by purely local measurements, and that many-body systems constitute important candidates to observe experimentally the violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys. Rev.

    Quantum Hysteresis in Coupled Light-Matter Systems

    Full text link
    We investigate the non-equilibrium quantum dynamics of a canonical light-matter system, namely the Dicke model, when the light-matter interaction is ramped up and down through a cycle across the quantum phase transition. Our calculations reveal a rich set of dynamical behaviors determined by the cycle times, ranging from the slow, near adiabatic regime through to the fast, sudden quench regime. As the cycle time decreases, we uncover a crossover from an oscillatory exchange of quantum information between light and matter that approaches a reversible adiabatic process, to a dispersive regime that generates large values of light-matter entanglement. The phenomena uncovered in this work have implications in quantum control, quantum interferometry, as well as in quantum information theory.Comment: 9 pages and 4 figure

    Functional advantages offered by many-body coherences in biochemical systems

    Full text link
    Quantum coherence phenomena driven by electronic-vibrational (vibronic) interactions, are being reported in many pulse (e.g. laser) driven chemical and biophysical systems. But what systems-level advantage(s) do such many-body coherences offer to future technologies? We address this question for pulsed systems of general size N, akin to the LHCII aggregates found in green plants. We show that external pulses generate vibronic states containing particular multipartite entanglements, and that such collective vibronic states increase the excitonic transfer efficiency. The strength of these many-body coherences and their robustness to decoherence, increase with aggregate size N and do not require strong electronic-vibrational coupling. The implications for energy and information transport are discussed.Comment: arXiv admin note: text overlap with arXiv:1706.0776

    Pulsed Generation of Quantum Coherences and Non-classicality in Light-Matter Systems

    Get PDF
    We show that a pulsed stimulus can be used to generate many-body quantum coherences in light-matter systems of general size. Specifically, we calculate the exact real-time evolution of a driven, generic out-of-equilibrium system comprising an arbitrary number N qubits coupled to a global boson field. A novel form of dynamically-driven quantum coherence emerges for general N and without having to access the empirically challenging strong-coupling regime. Its properties depend on the speed of the changes in the stimulus. Non-classicalities arise within each subsystem that have eluded previous analyses. Our findings show robustness to losses and noise, and have potential functional implications at the systems level for a variety of nanosystems, including collections of N atoms, molecules, spins, or superconducting qubits in cavities -- and possibly even vibration-enhanced light harvesting processes in macromolecules.Comment: 9 pages, 4 figure
    • …
    corecore