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The difference of temperatures between an impurity and the surrounding gas in an open vibrated
granular system is studied. It is shown that, in spite of the high inhomogeneity of the state, the temperature
ratio remains constant in the bulk of the system. The lack of energy equipartition is associated to the
change of sign of the pressure diffusion coefficient for the impurity at certain values of the parameters of
the system, leading to a segregation criterium. The theoretical predictions are consistent with previous
experimental results, and also in agreement with molecular dynamics simulation results reported in this
Letter.
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Granular systems, i.e., assemblies of macroscopic grains
dissipating part of their kinetic energy during collisions,
exhibit a rich phenomenology with many qualitative dif-
ferences as compared with molecular systems [1]. Among
these are the breakdown of energy equipartition [2,3] and
particle segregation in agitated mixtures [4,5]. The aim of
this work is to investigate both effects for a dilute mixture
in the tracer limit, i.e., very low mole fraction of one of the
species, showing that there is a close relationship between
them.

Different species of a granular mixture have different
granular temperatures, defined from the average kinetic
energy of the particles. A prediction for their ratio in a
dilute binary mixture of smooth inelastic hard spheres has
been derived from the inelastic Boltzmann equations de-
scribing the time evolution of the distribution functions of
the species [6], and its accuracy has been verified by
molecular dynamics simulations for the particular case of
an isolated homogeneous system [7]. In this Letter, it will
be shown that kinetic theory also accurately predicts the
temperature ratio in the case of a highly inhomogeneous
driven system. This ratio turns out to be constant in the
bulk of the system, consistent with the experimental results
reported in [3]. As in the homogeneous state, deviations
from equipartition depend on the mechanical differences
between the species and the degrees of inelasticity of
collisions.

Particle segregation is the demix of a granular mixture
when shaken. Usually, the larger particles are observed to
rise (Brazil-nut effect), although under certain conditions
they can also tend to descend (reverse Brazil-nut effect).
Several mechanisms, corresponding to different scenarios,
have been proposed to explain both behaviors [4,8,9],
although the phenomenon is far from being fully under-
stood. Here, segregation will be investigated in the context
of hydrodynamics for a dilute granular mixture as derived
from kinetic theory [10]. The relative position of the tracer
component with respect to the excess component is deter-
mined by the sign of the pressure diffusion coefficient.
While in a molecular gas this sign is fixed by the mass
ratio of the particles of the components, for a granular gas
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it also depends on the temperature ratio. Because of the
lack of energy equipartition, if follows that the criterion for
segregation is rather complicated, involving all the pa-
rameters of the mixture.

The model system considered is a low density gas of
smooth inelastic hard spheres (d � 3) or disks (d � 2) of
mass m and diameter �, and one impurity of mass m0 and
diameter �0. This is formally equivalent to the tracer limit
for the impurity component. Inelasticity of collisions is
specified by two independent constant coefficients of nor-
mal restitution, � and �0, referring to gas-gas and
impurity-gas collisions, respectively. The system is in
presence of a uniform external field of the gravitational
type, so each particle is submitted to a force per unit of
mass given by �g0êz, where g0 is a positive constant and
êz a unit vector in the direction of the z axis. Energy is
continuously supplied to the system through the bottom
wall located at z � 0 that is vibrating with small amplitude
and high frequency. There is no upper wall, i.e., the system
is open.

Under the above conditions, the system exhibits an
inhomogeneous steady state with gradients only in the z
direction and vanishing velocity field. In the case of a one-
component system, it has been verified that the hydrody-
namic profiles away from the walls are well described by
the hydrodynamic equations [11,12]. It is assumed that
these profiles are not affected by the inclusion of the
impurity. Consider the local temperatures of the gas and
the impurity, T�z� and T0�z�, defined in the usual way from
the respective mean square velocities (with the Boltzmann
constant set equal to unity). A formal relation between both
temperatures can be derived if the existence of a hydro-
dynamic regime is assumed and, moreover, that the corre-
sponding ‘‘normal’’ solution of the Boltzmann equation for
the impurity can be generated by an extension of the
Chapman-Enskog method [10,13]. Then, it is obtained
that the lowest order in the gradients of the cooling rates
for the gas, � �0��z�, and the impurity, � �0�0 �z�, must be equal.
These rates are nonlinear functionals of the zeroth order
distribution functions, and can be estimated at good ap-
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FIG. 1. Dimensionless temperature profiles of the gas (solid
line) and the impurity (symbols) for m0=m � 1=2. The different
symbols correspond to different values of the restitution coeffi-
cient �0, as indicated. The values of the parameter h, defined in
the main text, are also indicated for reference.
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proximation using Maxwellians, with the results [14]
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This gives a cubic equation which has a unique real,
positive solution for all the allowed values of h and �.
For elastic collisions one gets � � m=m0, as required by
energy equipartition. Moreover, in the limit of an elastic
gas, � � 1, but inelastic collisions between the intruder
and the fluid, �0 < 1, the expression obtained in Ref. [15]
is recovered. The behavior of the solution in the limit � !
0 in the context of the isolated homogeneous state has been
analyzed in [16], where it has been shown that a qualitative
change similar to a second order phase transition occurs,
but this will not be discussed here.

From Eq. (5) it follows that � does not depend on z.
Therefore, the temperature ratio T0�z�=T�z� not only differs
in general from unity, but remains constant along the
system. Moreover, it does not depend either on the precise
way in which the wall is being vibrated, as long as the
assumed steady state is reached. Of course, the result only
holds in the bulk region of the system, where a hydro-
dynamic description is expected to apply. These predic-
tions are in qualitative agreement with the experimental
results found by Feitosa and Menon [3], although it must
be realized that their experiments are not carried out in the
tracer limit. On the other hand, these authors did not find
any dependence of the temperature ratio on the inelasticity
of the grains, while Eq. (5) predicts a rather strong one.

To check the above results, we have performed molecu-
lar dynamics (MD) simulations of a system of N inelastic
hard disks (d � 2). The wall at the bottom vibrates with a
09800
sawtooth profile with velocity vw and collisions of the
particles with it are elastic. Moreover, the amplitude of
the wall motion is much smaller than the mean free path of
the particles next to it, so in practice the position of the wall
can be taken as fixed at z � 0. Periodic boundary condi-
tions are used in the direction perpendicular to the field.
The units are defined by m � � � g0 � 1. In all the
results to be reported in the following, the parameters
determining the state of the gas have been kept constant,
namely N � 359, � � 0:95, vw � 5, and a width S � 50.
For these values, it is verified that the system is fluidized
and actually reaches the steady state assumed above. In
Fig. 1, the temperature profiles of the impurity for m0=m �
1=2, �0 � 1, and several values of �0 are shown. Also, the
temperature profile of the gas (solid line) is included. It is
clearly observed that energy equipartition is not verified,
and that the temperature difference depends on �0. The
ratio between the impurity and gas temperatures for the
same states is plotted in Fig. 2. In agreement with the
theoretical prediction, the ratio remains constant, aside
from statistical fluctuations, in the interior of the system,
even in the region where each of the partial temperatures
presents large gradients. In fact, the kinetic boundary layer
next to the vibrating wall is quite narrow. Similar behaviors
have been found for other values of m0, namely m0=m �
0:75, 1, and 2.

The quantitative comparison of the simulation results
with Eq. (5) is presented in Fig. 3, where � is plotted
against the parameter h. The solid line is the solution of the
equation and the different symbols correspond to different
values of the mass ratio as indicated. A very good agree-
ment is obtained. It is worth to stress that the theory
remains accurate up to very small values of the coefficient
1-2
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FIG. 3. Ratio of the mean square velocities � as a function of
the parameter h defined in the main text. The solid line is the
theoretical prediction given by Eq. (5) and the symbols are from
the simulations for different values of the mass ratio, as indi-
cated.
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FIG. 2. Profiles of the ratio between the impurity and the gas
temperature for the same values of the parameters as in Fig. 1.
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of restitution �0, indicating the validity of the kinetic and
hydrodynamic descriptions even for very strong dissipa-
tion. Also, for later discussion note that � can be larger
than unity even if m=m0 � 1, and vice versa.

Consider next the number density for the impurity in the
steady state, n0�z�. It is determined by the condition that
the associated flux jz must vanish. To first order in the
gradients, it is

jz � �m0D@zx0 �
mn
T�z�

D0@zT �
m
T�z�

Dp@zp�z�; (7)

where x0 � n0=n, p � nT is the pressure, D the diffusion
coefficient, D0 the thermal diffusion coefficient, and Dp the
pressure diffusion coefficient. Explicit expressions for
these transport coefficients can be derived by the
Chapman-Enskog procedure in the first Sonine approxima-
tion [10,13],
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Here � is a collision frequency,
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where  � m=�m�m0� and �e is the elastic limit,
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Although the equation jz � 0 can be (numerically) inte-
grated to get n0�z�, given that the hydrodynamic profiles
for the gas are known, we will restrict ourselves to a
qualitative property of n0�z�. We will determine the posi-
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tion of the maximum of n0�z� relative to that of n�z�. That
means that we consider situations in which the latter exists,
which is always the case for large enough number of
particles N [11]. Let us denote by zm the height at which
this maximum occurs. It has been established that at this
point the temperature of the gas is a decreasing function of
z, i.e., @T=@z < 0 at z � zm [11]. Then, it is obtained
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If the right-hand side of the above equation is positive,
n0�z� is still growing at z � zm, following that its maxi-
mum occurs at z0;m > zm. In the opposite case, the maxi-
mum of n0�z� takes place at z0;m < zm. Note that this sign is
the same as that of the pressure diffusion coefficient Dp.
The general discussion is rather complicated, given the
large number of parameters involved [13]. For the sake
of simplicity, we are going to consider the region of the
parameter space verifying �< h=2, which includes all the
MD simulations reported here. For this range of values, it is
easily verified that 1� 3� �0�=2�� � �0�2=2�2 > 0, and the
sign of @ lnn0=@z at z � zm is determined by the value of
�. For �> 1 (�< 1) the derivative is positive (negative)
and the position of the density maximum for the impurity is
higher (lower) than that for the gas. As mentioned above,
the value of � can be quite different from the mass ratio
due to the different temperatures of the impurity and the
gas. Since the value of � is a function of all the parameters
1-3



0 100 200
z/σ

0

0.005

0.01

0.015

P
α0=0.95 h=0.65
α0=0.7 h=0.57
α0=0.5 h=0.5
α0=0.3 h=0.43

FIG. 4. Normalized height distributions for the gas (solid line)
and the impurity (symbols) for the same systems as in Fig. 1.
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FIG. 5. Ratio between the impurity and the gas center of mass
positions vs the ratio of the mean square velocities �. The
different symbols correspond to different values of the mass
ratio as indicated.
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of the system, the segregation criterion, understood as a
rule determining the relative position of the impurity with
respect to the gas, also involves all those parameters.

The MD density profiles for the same systems as in
Fig. 1 are given in Fig. 4. Again, the solid line is the density
profile of the gas, normalized to unity for comparison
purposes. As the restitution coefficient �0 increases, the
maximum of the density profile for the impurity moves
towards higher regions and the profile becomes wider,
showing the tendency of the impurity to rise. The same
effect is observed for the other values of the mass ratio
considered. Since the value of � increases as �0 increases
keeping the remaining parameters constant, this behavior
is in qualitative agreement with the above theoretical
predictions.

The distributions for the position of the impurity become
quite flat as the value of �0 increases, rendering quite
difficult to identify their maximum from the MD results.
Then, what has been measured is the center of mass
position for both the gas, zc:m:, and the impurity, z0. In
Fig. 5 the ratio z0=zc:m: versus � is shown. It is seen that the
segregation criterium derived above is fairly obeyed, in
spite of the fact that the shape of the density distribution
clearly indicates that the position of the maxima are rather
different from those of the centers of mass. Similar results
have been found for other values of the parameters, includ-
ing different sizes of the impurity [13].

To conclude, it must be stressed that the present work
deals with a dilute granular mixture in the tracer limit. At
higher densities, other segregation mechanisms, such as
those discussed in [8,9], become important. On the other
hand, there is no reason to expect that the one identified
here fails to be relevant at those densities.
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