21,574 research outputs found
Analysis of Cerenkov pulses recorded simultaneously at two sites
The agreement between measured distances to maximum for approx. 49 simultaneous Cerenkov pulse profiles from different sites is + or - approx. 0.1 km near 4.5 km and + or - 0.5 km near 7 km. Uncertainty in depths of maximum are approx. + or - 10 g sq and + or - 30 g cm/2 respectively. Usually the Hillas-Patterson simulation is able to fit both pulse shapes satisfactorily using a single N(x) profile
An investigation of the increase in vortex induced rolling moment associated with landing gear wake
Flight tests were conducted to verify the results found in ground base facilities of the effect of span lift load variation as well as the vortex attentuation of the high energy jet engine exhaust through proper thrust programming. During these flight tests a large increase in vortex strength was experienced as a result of extending the landing gear. Tests in the Langley Vortex Research Facility indicate that the wake produced by the landing gear may possibly form an aerodynamic endplate or reflection plane at the inboard edge of each inboard flap which increases the effective aspect ratio of the flap and thereby increases the strength of the flap outer edge vortex
Thrust-augmented vortex attenuation
An experimental investigation was conducted to determine the vortex attenuating effect of engine thrust. Tests were made using a 0.03-scale model of the Boeing 747 transport aircraft as a vortex generating model. A Learjet-class probe model was used to measure the vortex induced rolling moment at a scale separation distance of 1.63 km. These tests were conducted at a lift coefficient of 1.4 at a model velocity of 30.48 m/s. The data presented indicate that engine thrust is effective as a vortex attenuating device when the engines are operated at high thrust levels and are positioned to direct the high energy engine wake into the core of the vortex. The greatest thrust vortex attenuation was obtained by operating the inboard engine thrust reversers at one-quarter thrust and the outboard engines at maximum forward thrust
A static air flow visualization method to obtain a time history of the lift-induced vortex and circulation
A recently proposed method of flow visualization was investigated at the National Aeronautics and Space Administration's Langley Research Center. This method of flow visualization is particularly applicable to the study of lift-induced wing tip vortices through which it is possible to record the entire life span of the vortex. To accomplish this, a vertical screen of smoke was produced perpendicular to the flight path and allowed to become stationary. A model was then driven through the screen of smoke producing the circular vortex motion made visible as the smoke was induced along the path taken by the flow and was recorded by highspeed motion pictures
Spatial Competition in Private Labels
Previous studies find that private labels increase retailers' bargaining power with manufacturers and allow retailers to price discriminate. We use a spatial discrete choice model to show that retailers also use store brands to create market power through store differentiation, but not as a means of building market share.Marketing,
Circuit quantum acoustodynamics with surface acoustic waves
The experimental investigation of quantum devices incorporating mechanical
resonators has opened up new frontiers in the study of quantum mechanics at a
macroscopic level. Superconducting microwave circuits have proven to be
a powerful platform for the realisation of such quantum devices, both in cavity
optomechanics, and circuit quantum electro-dynamics (QED).
While most experiments to date have involved localised nanomechanical
resonators, it has recently been shown that propagating surface acoustic waves
(SAWs) can be piezoelectrically coupled to superconducting qubits, and
confined in high-quality Fabry-Perot cavities up to microwave frequencies in
the quantum regime, indicating the possibility of realising coherent
exchange of quantum information between the two systems. Here we present
measurements of a device in which a superconducting qubit is embedded in, and
interacts with, the acoustic field of a Fabry-Perot SAW cavity on quartz,
realising a surface acoustic version of cavity quantum electrodynamics. This
quantum acoustodynamics (QAD) architecture may be used to develop new quantum
acoustic devices in which quantum information is stored in trapped on-chip
surface acoustic wavepackets, and manipulated in ways that are impossible with
purely electromagnetic signals, due to the times slower speed of
travel of the mechanical waves.Comment: 12 pages, 9 figures, 1 tabl
Hypercube matrix computation task
The Hypercube Matrix Computation (Year 1986-1987) task investigated the applicability of a parallel computing architecture to the solution of large scale electromagnetic scattering problems. Two existing electromagnetic scattering codes were selected for conversion to the Mark III Hypercube concurrent computing environment. They were selected so that the underlying numerical algorithms utilized would be different thereby providing a more thorough evaluation of the appropriateness of the parallel environment for these types of problems. The first code was a frequency domain method of moments solution, NEC-2, developed at Lawrence Livermore National Laboratory. The second code was a time domain finite difference solution of Maxwell's equations to solve for the scattered fields. Once the codes were implemented on the hypercube and verified to obtain correct solutions by comparing the results with those from sequential runs, several measures were used to evaluate the performance of the two codes. First, a comparison was provided of the problem size possible on the hypercube with 128 megabytes of memory for a 32-node configuration with that available in a typical sequential user environment of 4 to 8 megabytes. Then, the performance of the codes was anlyzed for the computational speedup attained by the parallel architecture
Recommended from our members
Development of competency models for assessors and simulators in high-stakes selection processes
Background: Selection for entry into UK medical specialty training is a high-stakes, high-volume process. For selection into General Practice, a large number of assessors and simulators are involved in the delivery of the selection centre, which represents the final stage of selection.
Aim: In order to standardize and quality-assure assessor and simulator involvement in the process, we developed two competency models outlining the knowledge, skills and attributes associated with each role using a previously validated job analysis methodology.
Results: The final qualitative analysis resulted in two competency models, each encompassing eight competency domains. In general, results from a validation questionnaire demonstrated positive feedback from various regional recruitment leads in the UK (n = 14).
Conclusion: Both models are currently being used in practice for quality assurance and training purposes. We conclude that the competency models can be used in three ways: (1) recruiting assessors/simulators; (2) in measuring performance of assessors/simulators and highlighting areas for potential development; and (3) they can be used for training assessors/simulators
Power system technologies for the manned Mars mission
The high impulse of electric propulsion makes it an attractive option for manned interplanetary missions such as a manned mission to Mars. This option is, however, dependent on the availability of high energy sources for propulsive power in addition to that required for the manned interplanetary transit vehicle. Two power system technologies are presented: nuclear and solar. The ion thruster technology for the interplanetary transit vehicle is described for a typical mission. The power management and distribution system components required for such a mission must be further developed beyond today's technology status. High voltage-high current technology advancements must be achieved. These advancements are described. In addition, large amounts of waste heat must be rejected to the space environment by the thermal management system. Advanced concepts such as the liquid droplet radiator are discussed as possible candidates for the manned Mars mission. These thermal management technologies have great potential for significant weight reductions over the more conventional systems
A review of residual stress analysis using thermoelastic techniques
Thermoelastic Stress Analysis (TSA) is a full-field technique for experimental stress analysis
that is based on infra-red thermography. The technique has proved to be extremely effective for
studying elastic stress fields and is now well established. It is based on the measurement of the
temperature change that occurs as a result of a stress change. As residual stress is essentially a
mean stress it is accepted that the linear form of the TSA relationship cannot be used to
evaluate residual stresses. However, there are situations where this linear relationship is not
valid or departures in material properties due to manufacturing procedures have enabled
evaluations of residual stresses. The purpose of this paper is to review the current status of
using a TSA based approach for the evaluation of residual stresses and to provide some
examples of where promising results have been obtained
- …