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ABSTRACT 

The objective of the Hypercube Matrix Computation (Year 1986-1987) task 
was to investigate the applicability of a parallel computing architecture to 
the solution of large scale electromagnetic scattering problems. Two existing 
electromagnetic scattering codes were selected for conversion to the Mark I11 
Hypercube concurrent computing environment. These two codes were selected so 
that the underlying numerical algorithms utilized would be different thereby 
providing a more thorough evaluation of the appropriateness of the parallel 
environment for these types of problems. 
domain method of moments solution, NEC-2, developed at Lawrence Livermore 
National Laboratory. The second code was a time domain finite difference 
solution of Maxwell's equations to solve for the scattered fields. 

The first code was a frequency 

Once the codes were implemented on the hypercube and verified to obtain 
correct solutions by comparing the results with those from sequential runs, 
several measures were used to evaluate the performance of the two codes. 
First, a comparison was provided of the problem size possible on the hypercube 
with 128 megabytes of memory for a 32-node configuration with that available 
in a typical sequential user environment of 4 to 8 megabytes. Then, the 
performance of the codes was analyzed for the computational speedup attained 
by the parallel architecture. The speedup can be measured a) by comparing the 
CPU times for key components of the code running on the 32-node Mark I11 
Hypercube with the CPU times for the same code components running on a VAX 
111750, b) by comparing the times for the code running in 32 nodes relative to 
the code running in a single node, and c) by comparing the times (and 

size per node is fixed and the number of nodes in use is varied. 
I therefore scalability to larger hypercube configurations) when the problem 
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SECTION I 

INTRODUCTION 

others concentrate large-grain computing capability in a modest number of 

Institute of Technology (Caltech)/Jet Propulsion Laboratory (JPL) Hypercube. 
A hypercube is a connectivity scheme which can be viewed as an array of N 

I distributed computing elements. One such architecture is the California 

A. THE OBJECTIVES 

The basic objective of the task was to investigate the applicability 
of a parallel computing architecture to the solution of large scale 
electromagnetic scattering problems. Specifically, the task was to implement 
two electromagnetic scattering codes encompassing different numerical 
algorithms on the Mark I11 Hypercube. The two selected algorithms utilized 
1) a frequency domain computer code which implemented the method of moments 
solution, and 2) a time domain code which used a finite difference solution of 
Maxwell's equations to solve for the scattered fields. Important measures for 
demonstrating the utility of the parallel architecture were the size of the 
problem that could be solved and the efficiency by which the paralleling could 
increase the speed of execution. In particular, the results of the parallel 
codes would be compared for both accuracy and speed with the sequential 
version of the code running on a standard mainframe. 

B. THE MARK I11 HYPERCUBE 

I The Mark I11 Hypercube node has a pair of Motorola 68020 
processors--one is the main application processor and the second is the 
communication processor (Figure 1.1). The communication processor handles 
internode communication generally without the need to interrupt the main 
processor. Currently the hypercube uses the Motorola 68881 floating point 
co-processor which delivers 60 to 120 thousand floating point operations per 
second (kiloflops) per node. A new floating point daughterboard is under 
development which will boost this performance to 5 to 10 megaflops per node. 
Each node has 4 megabytes of dynamic memory and 128 kilobytes of static 
memory. 
capable of communicating on all of its channels simultaneously. 

Communications flow at 2 megabytes per second per channel with a node 
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, 

Counterpoint 

Processor 

- 300 Kbyteslsec 
Control 4 + 

Mark 111 

Hypercube 

Operating systems: 
Crystalline 
Mercury (asynchronous) 

C 
FORTRAN 

Languages supported : 

lnterprocessor 
communication rate: 

2 MByteskec 

Figure 1 .1  The Mark I11 Hypercube System. 
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Two operating systems have been developed for the Mark I11 Hypercube. 
The first is the synchronous or Crystalline Operating System (CrOS). 
communicating regime nodes run asynchronously, aligning activity only when 
communication is required between two processors. For some applications the 
message passing requirements are irregular. For this reason a second 
operating system known as Mercury was developed to handle asynchronous message 
traffic. 
within a single code. 
programing languages. 

In this 

An application can flow from one operating system to the other 
The Mark I11 Hypercube supports both C and FORTRAN 
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SECTION I1 

TASK DESCRIPTION 

A'. OBJECTIVES 

The objectives of the Matrix Computation Task were to convert two 
electromagnetic scattering codes to the hypercube parallel computing 
environment and to analyze the results as to correctness and performance. 
These two codes differ in the underlying techniques used for obtaining 
electromagnetic scattering solutions. The one code is a frequency domain 
based code while the other is time domain. 

B. TECHNICAL APPROACH 

The first phase of the task was to select the codes which would be used 
for the conversions. Since both codes were either implemented on or portable 
to a VAX, the next step was to run the codes on a VAX. Eventually the VAX 
runs would be used to benchmark the performance of the respective codes. The 
next phase was to transport the codes to the Counterpoint System XIX computer 
environment. The Counterpoint which is a Motorola 68020 based system serves 
as the host to the Mark 111 Hypercube. Once this phase was completed, then 
began the actual conversion of the two codes to the parallel computer. 

The task team has six members, three of which worked on the time domain 
Two teams were selected rather than code and three on the frequency domain. 

one team doing both codes back to back to reduce the time span of the 
contract; A mare detailed description of the task phases follows. 

I 

I 

1. Selection of Codes 

The selection of the appropriate frequency domain code for the 
parallel conversion was determined from the onset. The widely used Numerical 
Electromagnetic (Method of Moments) Code (NEC-2) developed at Lawrence 
Livermore Laboratories is the premier code for frequency domain solutions and 
as such it is well-documented and examples of solutions are readily available. 

The selection of the appropriate time domain code was not as simple. 
Therefore, the first phase of the task included a survey of existing time 
domain codes. The K.S. Kunz' Generalized Finite Difference Time Domain Code 
GFDTD, although limited in scope, was determined to provide an adequate basic 
code. During the course of the task, this code was enhanced to provide 
additional capabilities. 

2. Transferring to the VAX 

Both codes transferred easily to the VAX environment. For the NEC 
code possible future portability problems were anticipated. 
FORTRAN-77 utilizing VAX extensions including system calls and complex data 
types. Because the Counterpoint adheres strictly to the FORTRAN-77 and hence 

NEC is written in 
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does not include the complex data type, it was decided to convert the complex 
data variables to arrays and provide the complex functions as subroutines 
first on the VAX. In this way the validity of any modifications could be 
checked before moving the code to the Counterpoint. Because most of the 
variables within the NEC code are of the complex data type, significant time 
was required to perform these changes. 

3 .  Transferring to the Counterpoint 

Once the codes were verified on the VAX, they each were transferred 
to the Counterpoint. Again, comparisons of the results were performed. 
Differences in precision for single and double precision of the VAX and 
Counterpoint were eliminated as a source of disparity between solutions; 
excellent agreement was found between results on the two computers for both 
codes. 

4 .  Parallel Code Conversion 

The most significant portion of the time on the task was the actual 
conversion to a parallel code. The finite difference time domain code team 
first implemented the GFDTD code. The correctness of the parallel solutions 
were verified by comparisons with the results of sequential runs both on the 
VAX and on the Counterpoint. 
code developed by Allen Taflove. The results from runs of the two codes did 
not demonstrate as good an agreement as was expected. Taflove had validated 
his results by comparing his results with the method of moment ones. It was 
determined that the parallel finite difference code should be enhanced to 
include second order radiation boundary conditions. The second order 
conditions suppress waves impinging on the truncation planes at angles as 
large as 45 degrees. The fact that the first order conditions have a 
fundamental limit of small angles of incidence was expected to be the major 
reason for the disparity between results. A second comparison of results then 
produced good agreement. 

The results were also compared with a similar 

The method of moments frequency domain code was implemented in stages. 
The first capability to be incorporated was the wire model. In order to have 
a sequential code to use for comparison, a modified sequential code was 
developed extracting only those elements from the NEC code which were 
necessary for the solution of the wire case. This subset of NEC was called 
"Short-NEC". Included in the preparation of Short-NEC was the transformation 
of the code from a transposed fill of the interaction matrix to a "normal" 
(i.e. not transposed) fill. Once the sequential version of Short-NEC was 
completed and tested, work began on the parallel version. One by one routines 
were converted to run on the hypercube rather than on the Counterpoint. Once 
the wire capability had been tested, patch, extended thin wires, and loading 
were added to form the version which was called "Medium-NEC". Along with the 
extended capabilities, the ability to handle symmetric cases and multiple 
right-hand side excitation vectors was provided. 
decomposition factorization and solution were replaced by the parallel 
Householder transformation and solution. 

The sequential LU 
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5. Comparison of Results 

As has been noted, at all stages of the code development comparisons 
were done to assure the correctness of the obtained solution. In the case of 
the finite difference code, there no longer was a sequential code to use for 
verification. Therefore, the Taflove code was used for this comparison. 

6. Analysis of Performance 

Timing comparisons were run between the VAX codes and their parallel 
counterparts. 
the Counterpoint and one node of the hypercube. Again, since no sequential 
code exists which incorporates the full capability of the enhanced parallel 
finite difference code, the timing was obtained by comparing the results of 
the multiple node hypercube with those of the code running on one node. 

Also timing comparisons were obtained for the code running on 

7. The Sponsor-Selected Test Case 

The sponsor representative specified a particular test case to be 
run on both codes. 
modelling takes no advantage of the properties of symmetry of the object. 
results are compared using the radar cross section (RCS) of the two 
solutions. In addition, the degree of agreement with the exact solution is 
analyzed. 

The case is a plane wave incident on a sphere. The 
The 
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SECTION I11 

TIME DOMAIN CODE 

A .  DESCRIPTION 

The Finike-Difference Time-Domain (FDTD) method employs an iterative 
solution to Maxwell's time-dependent curl equations to determine the fields 
associated with complicated scattering objects. Because of the simplicity and 
directness of the method, the required memory and execution times increase 
only linearly with the number of cells in the computation region. Hence, FDTD 
is particularly well suited to electromagnetic analysis of structures with 
volumetric complexity (e.g., inhomogeneous dielectrics). 

Since FDTD is a time-domain code, it most naturally lends itself to 
problems involving transient effects. K. Yee's [3-11 pioneering work on FDTD 
considered such applications. The application of the method to the 
determination of steady-state fields, and in particular to the calculation of 
radar cross sections (RCS), has been pioneered by A. Taflove and colleagues 
[3-21 at Northwestern University. It is the application of FDTD to RCS 
computation that is relevant to this report. 

Taflove provided us with a copy of his FDTD FORTRAN code along with a 
report [3-31 describing the method and 
Initially, we planned to decompose this 
hypercube, but the monolithic nature of 
Instead we obtained a FDTD FORTRAN code 
Lawrence Livermore National Laboratory 
not for the exact code that we received 
straightforward coding of GFDTD greatly 
decomposition. 

ts application to RCS studies. 
code into parallel form for the 
the code made this impractical. 
(GFDTD) and user's manual [3-41 from 
LLNL). (Note that [3-41 is actually 
) The modular form and 
eased the task of parallel 

However, the GFDTD code was designed for the analysis of transient 
currents. We added (in parallel) the features required to make an RCS code 
with capabilities similar to Taflove's code. In making these additions we 
closely followed the approach taken by Taflove. A good discussion of this 
approach is given in [3-31. 

Note that there is one major difference between our RCS code and 
Taflove's RCS code: Taflove employs the total-field form of the curl 
equations, whereas we (and LLNL) use the scattered-field curl equations. 
According to Taf love [ 3-3 ] and [ 3-5 1 , the total-f ield formulation more 
accurately determines the total-fields in shadow regions than does the 
scattered-field formulation. However, since we are only interested in the 
scattered-fields in this work, Taflove's argument does not apply. 

Below we present an outline of the theory and algorithms comprising our 
code. This is supported by a flowchart of the code, Figure 3.1. 
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Figure 3.1 Block diagram of FDTD algorithm. 
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1. The Finite-Difference Time-Domain Method 

The FDTD method is a direct solution of Maxwell's time-dependent 
The goal is to model the propagation of an EM wave into a curl equations. 

volume of space containing a dielectric or conducting structure. 
time-stepping, i.e., repeatedly implementing a finite-difference analog of the 
curl equations at each cell of the corresponding space lattice, the incident 
wave is tracked as it first propagates to and interacts with the scattering 
object. Wave-tracking is completed when the desired late-time or sinusoidal 
steady-state behavior is observed at each lattice cell. This procedure, while 
computationally intensive, achieves simplification by analyzing the 
interaction of the wavefront with portions of the structure surface at a given 
instant in time, rather than attempting a simultaneous solution of the entire 
p rob 1 em. 

By 

Modeling of the scattering object is achieved by embedding the 
object in a lattice composed of FDTD unit cells as shown in Figure 3.2. The 
arrangement of the electric and magnetic field components about the unit cell 
is shown in the upper left of the figure. 
corresponding finite-difference formulation were first proposed by Yee [3-11. 

This arrangement and the 

The structure of interest is mapped into the lattice by first 
choosing the space increment and then assigning values of permittivity and- 
.conductivity (andlor permeability and magnetic loss) to each component of E 
(and/or H). 
is required because the Yee formulation of the curl equations satisfies these 
conditions automatically; hence, the basic computer program need not be 
modified to change from structure to structure. Inhomogeneities and fine 
details can be modeled with a maximum resolution of one unit cell. 

No special handling of EM boundary conditions at media interfaces 

The c u r l  equations are cast  into the form 

-S -i aii + u E s  = V x H - u E - ( E  - E O )  - at E -  at 

(3 .A. la) 

(3 .A. lb) 

This formulation is termed the "scattered-field" formulation, where the 
scattered-fields are defined to be the total-fields minus the 
incident-fields. Note that the total-fields are the true fields in the 
presence of the scatterer, while the incident fields are defined to exist in 
empty space. In empty space, equations (3.A.1) reduce to the form 

a i S  -S 

at = - V I C E  

-S - V x H  E - -  aiS 
o at 

(3.A.2a) 

(3.A.2b) 
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Figure 3.2 Scattering object embedded in a FDTD lattice. 
(This figure is reproduced, courtesy of the authors of Ref. [3-31.) 
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For the case of a perfectly conducting medium, equation (3.A.la) reduces to 
equation (3.A.2a1, but equation (3.A.lb) takes the form of the boundary 
condition 

-I -: 
3 I 

Etan = -Etan (3.A.3) 

Equations (3.A.11, (3.A.2) and (3.A.3) are converted to finite-difference 
form by first expressing the vector equations as separate scalar equations in 
rectangular coordinates. Next, two-point central differencing is employed in 
both spatial and temporal coordinates to discretize the scalar equations. 
With the Yee formulation, second-order accuracy in the space and time 
increments is achieved. The mathematical details are discussed in 13-31 and 
13-41. 

To obtain accurate scattered fields, the size of the unit cell (i.e., the 
spatial finite-difference step) must be a small fraction of the electrical 
size of the scatterer. Taflove [3-31 claims to obtain a near field accuracy of 
27% for d = W10, and f3% for d = W 2 0 ,  where '4' is the side of a cubic unit 
cell. 

Once a unit cell size is specified, the time-step (i.e., temporal 
finite-difference step) is determined from the requirement of algorithm 
stability. The so-called Courant stability condition requires a time-step 
dt which satisfies 

d dt 5: 
J3 -c 

(3.A.4) 

where 'c' is the speed of light. A derivation of this equation is given in an 
appendix of 13-21. 

- 
The FDTD algorithm evaluates ES and is at alternate half time-steps 

in a manner directly analogous to the solenoidal generation of fieLds as 
expressed by the curl equations. 
timg-step n + 1/2 (integer n) are determined from the appropriate components 
of HS at time-step n and from-their own values at time-step n - 1/2. 
Similarly, the components of H, at time-step n + 1 are determined from the 
appropriate components of ES at time-step n + 112 aEd from-their own values 
at time-step n. 
during each full time-step for every point in the lattice. 

Specifically, the components of ES at 

In this manner, updated values of E, and Hs are computed 

At the lattice boundary this algorithm can no longer be used to update 
field values, because points outside the lattice would be needed. Hence, a 
radiation condition is applied to the scattered fields at each lattice 
truncation plane to simulate the extension of the lattice to infinity. 
Specifically, the radiation condition gives us a formula by which the 
components of E, lying in a given truncation plane are updated using their 
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own values at the previous time-step. Formulas for first-order and 
second-order (i.e., containing first and second derivatives in space and time) 
radiation conditions and their corresponding central-difference expressions 
are given in [3-61. A discussion of the derivation of radiation conditions 
from the scalar wave equation may be found in 13-71. 

The sole reason f o r  employing high-order radiation conditions is that 
their greater accuracy allows us to truncate the lattice closer to the 
scattering object, thus saving storage and computation. The first-order 
radiation condition yields accurate near fields only for lattice dimensions 
greater than twice the dimension of the scatterer. 
condition, while considerably more complicated, allows us to use a lattice 
less than twice the dimension of the scatterer. 

The second-order radiation 

As mentioned above, we generated a parallel FDTD code similar to 
Taflove's sequential code by starting with a LLNL FDTD code (GFDTD). Because 
the GFDTD was used.for the analysis of transient currents, extensive 
modifications were necessary to make a code capable of RCS calculations. 
These modifications in order of implementation are the following: 

(1) plane wave incident field 

( 2 )  second-order radiation condition 

( 3 )  magnitude and phase calculation for sinusoidal steady-state 

( 4 )  near-to-far field transformation. 

Modifications (1) and ( 2 )  represent changes to already existing features of 
GFDTD. The original code had an exponential pulse-type incident field and 
employed the first-order radiation-condition. We modified the code to have a 
uniform, monochromatic, plane wave incident field, and to use the second-order 
radiation condition. The latter involved extensive code changes. 

Standard RCS computation is performed with steady-state far fields, 
whereas FDTD computes the time-evolution of the near fields. Thus, 
modifications ( 3 )  and ( 4 )  represent additions to GFDTD. 

To achieve steady-state with FDTD, the algorithm is marched-in-time 
through several cycles of the incident field. The peaks and valleys of the 
sinusoidally varying waveform are monitored by computing the first and second 
time-derivatives at various points in the lattice. At a peak or valley, the 
first derivative is zero. The second derivative is used to determine 
specifically which extremum is present. After several cycles of the incident 
field, the peaks and valleys converge and the fields have reached 
steady-state. The fields at the monitored lattice points may then be 
expressed as a magnitude and phase. The magnitude is computed as one half the 
difference between the peak and valley amplitudes. The phase is found by 
first recording the time-step number at which a peak occurs and subtracting it 
from a reference time-step number. The resulting time difference is then 
converted to radians by multiplication with the incident field angular 
frequency. Note that the reference time-step is an arbitrarily chosen time 
which occurs before the start of steady-state and which must remain a constant 
for the entire run. 

3-6 



The specific points in the lattice fo r  which steady-state magnitude and 
phase are computed are determined by the near-to-far field transformation. 
This transformation relates the tangential E and H fields over a closed 
surface to the fields at any point outside the volume enclosed by the 
surface. We define this surface to be the "integration surface", and choose 
it to be the surface existing several cells inside the boundary of the 
computation lattice. After steady-state has been reached and at the end of 
time-stepping, the magnitude and phase for each point on the integration 
surface are stored. These points are then integrated (with an appropriate 
weighting-function) over the integration surface to determine the far fields 
in a particular direction. 

Implementing the magnitude and phase computation and the near-to-far 
field transformation required significant additional coding. Computing the 
RCS, once the appropriate far-fields have been obtained, is a straightforward 
matter. 

The mathematical details of the near-to-far field transformation, as well 
as a more in-depth discussion of the second-order radiation condition and the 
magnitude and phase computation, may be found in [3-31. 

2 .  Block Diagram of Algorithm 

A block diagram outlining the sequence of operations in the FDTD 
algorithm is shown in Figure 3.1. In general, a subroutine (or several 
subroutines) of FORTRAN code corresponds to each block. 
specifically for the code generated in this work (as outlined in Section 
3.A.11, but does not describe the parallel decomposition of the code. 

This block diagram is 

B. PARALLEL DECOMPOSITION 

The Generalized Finite Difference Time Domain (GFDTD) code, explained in 
detail below, requires discrete field components at a distance of at most one 
half a unit cell to update a particular field component within the computation 
lattice. GFDTD requires discrete field components at a distance of at most 
two unit cells to update a particular field component on the truncation 
planes. When GFDTD calculates Radar Cross Sections (RCS), portions of the 
integration planes, which we use to evaluate vector potentials, reside in 
distinct nodes of a Hypercube. Because of these features, which include field 
updates using small volumes of the computation lattice and RCS calculations 
using contributions from distinct areas of the computation lattice, we can 
construct a Parallel Finite Difference Time Domain (PFDTD) code. 

1. Generalized Finite Difference Time Domain Code 

In this section, we give a detailed explanation of the Generalized 
Finite Difference Time Domain (GFDTD) code for solving electromagnetic 
scattering problems. 
Difference Time Domain (PFDTD) code. 

In the next section, we elaborate on the Parallel Finite 
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GFDTD uses a finite difference approximation to Maxwell's curl equations 
to solve electromagnetic scattering problems. 
for Maxwell's equations in finite difference form. Figure 3.3 shows the 
finite difference equation used to update the x component of the electric 
field at the current time, n. 
used to update the x component of the magnetic field at the current time, n. 
We explain the details of these updates below. 
for the update of the other four field components. 

Refer to Figures 3.3 and 3.4 

Figure 3.4 shows the finite difference equation 

There are similar equations 

According to the Yee method of updating discrete scattered electric and 
magnetic field components, GFDTD Constructs a lattice in coordinate space from 
several unit cells. The discrete scattered electric field components, exs, 
eys, and ezs, lie on the edges of each unit cell. For example, exs lies on 
the midpoint of edges in the x direction. 
components, hxs, hys, and hzs, occur on the centers of faces of each unit 
cell. For example, hxs lies on the center of cell faces perpendicular to the 
x direction. Refer to Figure 3.5 of a typical unit cell for the location of 
the discrete field components. To every unit cell, GFDTD assigns a 
permittivity, a permeability, and a conductivity. Refer to Figure 3.6 of a 
lattice in coordinate space for the placement of a typical unit cell. 
to 13-11, pp.302 to 307, for the Yee update method. 

The discrete magnetic field 

Refer 

The finite difference form of Maxwell's curl equations determines the 
spatial and temporal update of the discrete field components on the lattice. 
At time, n, the magnetic fields, on cell faces and at half a time step back, 
update neighboring electric field components on cell edges. For example, 
GFDTD uses hys and hzs components to update exs components. GFDTD, then, 
increments time by half the time step, dt. The new electric field components, 
on cell edges and at the new time, n+(dt/2), update neighboring magnetic field 
components on cell centers. GFDTD, then, increments time again by half of 
dt. This process continues until the discrete field components have constant 
maximum amplitudes and constant phase relative to a fixed iteration number. 

2 .  Parallel Finite Difference Time Domain Code 

The Parallel Finite Difference Time Domain (PFDTD) code has features 
different from GFDTD. 

PFDTD constructs a global lattice in coordinate space. This global 
lattice is identical to the lattice constructed by GFDTD. PFDTD divides this 
global lattice into blocks of nearly equal dimensions. PFDTD assigns 
neighboring blocks of the global lattice to nodes connected by a communication 
channel. This decomposition scheme assures that each node can perform its 
discrete field updates with resident information and information communicated 
by neighboring nodes. 

Figure 3.7 illustrates a decomposition of the 7 x 7 x 7 unit cell lattice 
of Figure 3.6. In this example, PFDTD uses four nodes of the hypercube. 
PFDTD assigns a 7 x 4 x 4 cell block to node 0, a 7 x 3 x 4 cell block to node 
1, a 7 x 4 x 3 cell block to node 2, and a 7 x 3 x 3 cell block to node 3. 
Figure 3.7 shows a cut in a plane perpendicular to the x axis. In this 
example, there are seven such planes along the x direction. 
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Maxwell's E q u a t i o n  for Scattered E F ie ld  

F i n i t e  D i f f e r e n c e  Form 

S f  n s n-1 i n  EX ( i f j f k ) - E x  ( i f j f k ) =  (b i t /&)  { -(&-&&Exf ( i f  j f k )  

s n-1 s, n-1/2 s, n-1/2 
-CJ E, ( i r  j f  k) +( H, ( i f  j + 1 / 2  k) - H, ( i  f 

if n s,n-1/2 s,n-1/2 -CJEx ( i r j f k )  -( H, ( i f  j ,  k+1/2) - H, ( i f  j k-1/2)) / AZ 1 

s : sca t te red  f i e l d  
i : i n c i d e n t  f i e l d  
n : c u r r e n t  t i m e  s t e p  
if j f k  : C a r t e s i a n  i n d i c e s  of l a t t i c e  
A t  : t i m e  i n c r e m e n t  
A y  : c e l l  l e n g t h  i n  t h e  y d i r e c t i o n  

Figure 3.3 Maxwell's equation in finite difference form for the x component 
of the scattered electric field. 
components follow by cyclically permuting the x, y, and z 
subscripts and i, j , and k array indices. 

The equations for the y and z 

3-9 



Maxwell's E q u a t i o n  f o r  Scattered H F i e l d  

F i n i t e  D i f f e r e n c e  Form 

S I  n s, n-1 H, ( i ,  j+1/2, k+1/2) - H, ( i ,  j+1/2, k+1/2) = 
i, n (At/p> { -(p-po)&H, ( i ,  j+1/2, k+1/2) 

s : scat tered f i e l d  
i : i n c i d e n t  f i e l d  
n : c u r r e n t  t i m e  s tep  
i, j, k : C a r t e s i a n  i n d i c e s  o f  l a t t i c e  
A t  : t i m e  i n c r e m e n t  
Ay : c e l l  l e n g t h  i n  t h e  y d i r e c t i o n  

Figure 3.4 Maxwell's equation in finite difference form for the x 
component of the scattered magnetic field. The equations 
for the y and z components follow by cyclically permuting 
the x, y, and z subscripts and i, j, and k array indices. 



Z 

Y 

X 

Figure 3 . 5  The location of e l ec tr i c  and magnetic f i e l d  components 
i n  a typical  unit  c e l l .  
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Figure 3.7 The decomposition of the global lattice among four nodes of the 
hypercube: magnetic field. Black arrows indicate the magnetic 
field components used to update x components of the electric 
field within a node and on the boundary between nodes. 
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With eight active nodes, PFDTD can also divide the global lattice in the 
x direction. The program will assign four cells in the x direction to the 
back four nodes and three cells to the front four nodes. In the x direction, 
the front four nodes have Cartesian coordinates greater than the back four 
nodes. The decomposition in the y direction for eys and in the z direction 
for ezs is identical to the decomposition described in the previous paragraph. 

3. Update of the Electric and Magnetic Field Components 

In the following paragraphs, we will explain the method to update 
the electric and magnetic field components within the volume of the global 
lattice. The x component of the electric field and the x component of the 
magnetic field will serve as examples. We cyclically permute the x, y, and z 
indices to generalize the discussion to the other four field components. 

Figure 3.7 illustrates the update of the x component of the electric 
field, exs. To update the discrete values of exs on the lattice, PFDTD 
requires the values of exs at the previous time step, the values of 
neighboring hys and hzs discrete fields at half a time step back, and the 
value of the x component of the incident electric field at the current time 
step. For dielectric materials, PFDTD also requires the first time derivative 
of this incident field at the current time. For an exs component in the 
middle of a block assigned to a particular node, the update is the same as the 
sequential case. 
neighboring nodes must communicate before the update. The black arrows 
pointing to a central exs component illustrate the two types of updates that 
can occur within node 3. Figure 3.3 shows the governing difference equation. 

For an exs component on a boundary between nodes, 

Figure 3.8 illustrates the update of the x component of the magnetic 
field, hxs. To update the discrete values of hxs on the lattice, PFDTD 
requires the value of hxs at the previous time step and the values of 
neighboring eys and ezs discrete fields at half a time step back. 
dielectric materials, PFDTD also requires the first time derivative of the 
incident magnetic field at the current time. For an hxs component in the 
middle of a block assigned to a particular node, the update is same as the 
sequential case. For an hxs component on a boundary between nodes, 
neighboring nodes must communicate before the update. The black arrows 
pointing to a central hxs component illustrate the two types of updates that 
can occur within node 0. Figure 3.4 shows the governing difference equation. 

For 

4. Second Order Correct Radiation Boundary Conditions 

Second order correct radiation boundary conditions work well with 
the spatial decomposition of the global lattice. A node, responsible for 
field points on the truncation planes, the planes marking the boundary of the 
computation lattice, has enough resident and communicated field information to 
update truncation plane points using second order correct radiation conditions. 
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Figure 3.8 The decomposition of the global lattice among four nodes of the 
hypercube: electric field. Black arrows indicate the electric 
field components used to update x components of the magnetic 
field within a node and on the boundary between nodes. 

3-15 



Figure 3.9 illustrates the update of an x component of the electric field 
on a truncation plane perpendicular to the y axis and with unit normal vector 
in the positive y direction. We label this point with the number 1. We cut a 
section perpendicular to the x axis to illustrate the update of point 1. To 
update point1 at time n, PFDTD needs the value of the field at points 1 and 2 
at time 2*dtback and time dt back. The program needs the value of the field 
at points 3 to 10 at time dt back. If any of the points 3 to 10 reside in 
neighboring nodes, the node containing point 1 must communicate with its 
neighbors before the update occurs. 

Figure 3.10 gives the relevant equation used in the update of exs points 
on this truncation plane. We remove the superscript, s ,  indicating scattered 
fields, for convenience. There exist similar equations for exs on truncation 
planes perpendicular to the z axis, for eys on truncation planes perpendicular 
to the x and z axes and for ezs on truncation planes perpendicular to the x 
and y axes. 

5 .  Radar Cross Section 

The spatial decomposition of the global lattice also works well f o r  
calculating the normalized radar cross section. Several nodes in the 
hypercube contribute to the integration that yields the electric and magnetic 
vector potentials. PFDTD combines the local contributions to these potentials 
to calculate E theta; E phi; the radar cross section, sigma; and the 
normalized radar cross section RCS. Figure 3.11 illustrates the relevant 
equations. 

The variables in Figure 3.11 equations are the following: sigma is the 
radar cross section, r is the distance of the observation point, r prime is 
the distance of the source point, a is the radius of the sphere, k naught is 
the wave number of the incident field, eta naught equals 376.73 ohms, theta 
and phi are the angles of the observation point, and E and H are the complex 
fields obtained from magnitude and phase evaluations on the truncation planes. 

The radar cross section calculation depends on the magnitude and phase of 
discrete field components on an integration surface. PFDTD uses a cube 
surrounding the scattering object as the integration surface. Portions of the 
cubic integration surface reside in different nodes. The program obtains the 
magnitude of field components on this integration surface by recording the 
peak and valley of the steady state sinusoidal wave forms. When a peak 
occurs, the program also records the time step. From this time step 
information, the time step increment dt, the wave number of the incident 
field, and the speed of light in vacuum, PFDTD calculates the phase relative 
to a reference time step. 

With the magnitude and phase of these near field points, PFDTD calculates 
rcs. Each node performs the vector potential integration on its portion of 
the integration surface. Each node calculates a local contribution to the 
fields E theta and E phi. PFDTD sums these local contributions in the control 
processor to obtain the global total E theta and E phi. With these total 
fields, the program calculates the radar cross section, sigma, and the 
normalized radar cross section, rcs. 
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C. RESULTS FOR A PERFECTLY CONDUCTING CUBE 

To test the validity of the results from PFDTD, we compared the program's 
reported current on the surface of a perfectly conducting cube with the 
results reported on page 163 of [3-33. 

We illustrate the scattering object in Figure 3.12. The scattering 
object is a perfectly conducting cube in vacuum. 
length of a cube side, ks, equals 2.  
direction. The direction 
of propagation of this plane wave is the z direction. The electric field is 
polarized in the y direction with magnitude 376.8 V/m. The magnetic field is 
polarized in the -x direction with magnitude 1.0 A/m. The wave number of this 
incident field is 2 radianlm. The frequency is 95.43 MHz. The wavelength is 
3.141593 m. 

The wave number times the 
The cube is one meter in each 

A plane wave is incident on the cube's front face. 

The plane wave hits the cube at time t=O. 

We choose a path along the bottom of the cube to evaluate the x component 
of the total magnetic field. 
nine selected test points, we can find the magnitude and phase of the 
tangential current along the path at these points. 
of a perfect conductor is 5 = 
surface of the scatterer. 

Knowing this magnetic field component at the 

The current on the surface 
x R ,  where n is the unit normal vector to the 

Because the memory limitation of each node of the hypercube affects the 
size of our test runs, we mention the array limitations of the version of 
PFDTD which we use for these runs. For code development reasons, the program 
uses double precision arrays. The arrays are double precision because we 
converted the original code, Generalized Finite Difference Time Domain 
(GFDTD), from Lawrence Livermore National Laboratory, which contained double 
precision arrays. The 4 Mbytes of memory on each node of the hypercube limit 
the code to allocate at most 37 x 37 x 37 unit cell blocks in each processor. 
With 32 nodes, 74 x 74 x 74 unit cells is the maximum size of a square 
lattice. With 0.05 x 0.05 x 0.05 m. unit cells, the maximum size for a square 
lattice is 3.7 x 3.7 x 3.7 m. 

The current version of PFDTD uses single precision arrays with the added 
With 32 nodes, the maximum size 

With 32 
capability to calculate radar cross section. 
of a square lattice for this new version is 80 x 80 x 80 unit cells. 
nodes, 160 x 160 x 80 unit cells is the maximum size of a non-cubic lattice. 

The parameters for the cube scatterer and for the incident field are 
identical to those values used by Taflove. 
and unit cell sizes. For example, in the run that generated the plots in 
Figure 3.13, the lattice truncation planes are 0.5 m from the surface of the 
scatterer. The unit cell has length 0.05 x 0.05 x 0 . 0 5  m. The time step, dt, 
is related t o  this length by the Courant stability condition. 
0.09629 ns. 

We are free to specify the lattice 

Dt equals 

In Figure 3.13, the results from PFDTD compare poorly with Taflove's 
result. We graph Taflove's result as solid lines in the magnitude and phase 
plots. The dashed curves are results from PFDTD. For this run, PFDTD updates 
the points on the truncation planes using first order correct radiation 
boundary conditions. Because the truncation planes are 0 . 5  m from the 
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Figure 3.13 The magnitude and phase from Taflove's results of scattering 
from a perfectly conducting cube and from a particular run 
using PFDTD: 
conditions. The solid lines show Taflove's results. The 
dashed lines show PFDTD results. We evaluate the current on 
the cube at nine test points which we indicate in Figure 
3.12. For this run, PFDTD updates points on the truncation 
planes using first order correct radiation boundary 
conditions. The lattice truncation planes are 0 . 5  m from the 
surface of the scatterer. The unit cell has length 0 . 0 5  m. 
The time step is 0.09629 ns. 

first order correct radiation boundary 
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scattering surface, the magnitude and phase of the current from PFDTD does not 
compare well with the Taflove result. When the distance of the truncation 
planes increases to 1.4 m from the surface of the scatterer, the PFDTD curves 
for magnitude and phase do not differ from the Taflove result by more than 10% 
in the non-shadow region of the scatterer. 

The results graphed in Figure 3.14 show better agreement. The parameters 
for the scatterer and the incident field for Figure 3.14 are identical to the 
parameters for Figure 3.13. However, PFDTD uses second order correct 
radiation boundary conditions. 
surface of the 1.0 m cube, the PFDTD curves for magnitude and phase do not 
differ from the Taflove result by more than 10%. 
radiation boundary conditions significantly decreased the difference between 
the Taflove curves and the PFDTD curves. 

With the truncation planes 0.5 m from the 

Second order correct 

To make sure that second order boundary conditions produce sensible 
results, we increase the size of the lattice. The larger lattice size should 
not significantly alter the curves shown in Figure 3.14. The parameters for 
the scatterer and the incident field are identical to the two previous runs. 
However, the truncation planes moved to 1.35 m. from the surface of the 
scatterer. Figure 3.15 shows the results of this run. Because the PFDTD 
solid curves have not changed significantly from the curves on Figure 3.14, we 
conclude the following for the cube scatterer: second order radiation boundary 
conditions significantly reduce reflections from truncation planes within a 
distance of 0 . 5  times the length of the scattering object. The following test 
runs also support this conclusion. 

Figure 3.16 is the result of our attempts to match the Taflove curves 
more closely and to test the action of the boundary conditions. The unit cell 
size is 0.03333 x 0.03333 x 0.03333 m. The time step equals 0.06419 ns. The 
lattice s i ze  is 2.0 x 2.0 x 2.0 iii. Except €or the shadow region, behind the 
scattering cube, the PFDTD curves for amplitude and phase do not differ from 
the Taflove result by more than 6%. We also ran the case with a unit cell 
size of 0.027778 x 0.027778 x 0.027778 m. The time step equals 0.05346 ns. 
The lattice size is now 2.06 x 2.06 x 2.06 m. The magnitude and phase curves 
for this run are similar to curves in Figure 3.16. In the non-shadow regions, 
the PFDTD and Taflove curves do not differ by more than 6%. 

D. PERFORMANCE OF THE HYPERCUBE 

To analyze the performance of PFDTD, we must identify the computing 
intensive parts of the code. PFDTD contains input/output subroutines and 
initialization and setup subroutines. Depending on the needs of the user, 
these subroutines typically last no more than 90 seconds. However, the time 
step iteration loop, in which the program performs field updates, radiation 
boundary condition updates, and internode communication for several 
iterations, can consume 90 minutes. Therefore, we concentrate on the 
execution times for the various parts of this iteration loop. 

There exist two methods to measure the efficiency of the program, PFDTD. 
The first method of measurement fixes the problem size and increases the 
number of active nodes. If the program were 100% efficient and if the number 
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Figure 3.16 The magnitude and phase from Taflove's results of scattering 
from a perfectly conducting cube and from a particular run 
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We evaluate the current on the cube at nine test points which 
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are 0.5 m from the surface of the scatterer. The unit cell 
has length 0.03333 m. The time step is 0.06419 ns. 

3-26 



of active nodes increases by a factor N, the execution time of the code should 
drop by 1/N. However, the addition of more nodes also increases the amount of 
internode communication. If this communication time is a significant fraction 
of the calculation time, poor efficiency will result. To assure that the 
ratio of the communication time to the calculation time is small, the global 
lattice must contain a large number of unit cells. Because the large lattice 
size demands the update of many discrete field components, the calculation 
time should dominate the communication time. However, a large lattice size 
may prevent PFDTD from running on small node ensembles of 1, 2, 4, or 8 
processors. 

The second method of efficiency measurement fixes the problem size in 
each node while increasing the number of active nodes. 
efficient and if the number of active nodes increases by a factor N, the 
execution time of the code should remain constant because the total 
computational load also increased by a factor N. However, the time may not 
remain constant because of the added internode communication. Note that, with 
each increase in the number of active processors, PFDTD solves a different 
problem because the global lattice size increases. 

If the code were 100% 

To assure that each node does about the same amount of work for the 
purposes of timing, we instruct PFDTD to free the entire global lattice of 
scattering material. This instruction is necessary to easily scale the 
problem. This condition places limitations only on the field update 
calculations. Instead of updating the fields according to perfectly 
conducting or dielectric material difference equations, PFDTD updates the 
fields according to vacuum difference equations. 

We concentrate on the various components in the iteration loop and 
utilize both methods of efficiency measurement. In each time step iteration, 
the pr'ograi updates the electric and magnetic fieid eompoiients, corminicates 
electric and magnetic field components on boundaries between nodes, and 
performs second order radiation boundary updates. Depending on the users 
needs, the program, at each iteration, may perform near field interpolation or 
evaluate magnitude and phase on integration planes. 
these two activities have magnitudes similar to the time for internode 
communication. We do not include these execution times in the following plots 
because PFDTD does not perform these calculations at every time step and 
because these execution times are small compared to the times for field 
updates and radiation boundary updates. 

The execution times of 

Table 3.1 shows three sets of timing runs using the first method of 
efficiency measurement. For the first set of times, we fix the global lattice 
size at 64000 cells. 
iteration for each component of the time step loop, which we described in the 
previous paragraph, the total time per iteration, the speedup, and the 
efficiency. We record times using 1, 2, 4, 8, 16, and 32 active nodes. For 
this first set, speedup equals run time using one node divided by run time 
using multiple nodes. For this set, efficiency equals speedup divided by the 
number of active nodes. 

We record the maximum reported execution time per 

We comment on this first set of timing runs. As the number of active 
nodes increases by a factor of two, the time per iteration to update field 
components within the volume of the computation lattice decreases by a factor 
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of two. The times in the next two columns include the time per iteration to 
update fields on the truncation planes and to perform internode 
communication. These times increase with the number of active nodes. For 16 
and 32 nodes, the number of cells per node are 4000 and 2000. In the 16 and 
32 node configurations, the ratio of communication time over calculation time 
is higher compared to the same ratio using 2 and 4 nodes. This higher ratio 
results in decreased efficiency. 

In the next set of timing runs in Table 3.1, we fix the global lattice 
size at 512000 cells. Because of memory limitations in each node, we record 
time using only 8, 16, and 32 active nodes. For this second set, we define 
speedup as the run time using eight nodes divided by the run time using 
multiple nodes. Efficiency equals speedup multiplied by eight and divided by 
the number of active nodes. For 16 and 32 nodes, the numbers of cells per 
node are 256000 and 128000. This high density of cells per node results in 
high efficiency compared to the 8 node configuration. 

In the last set of timing runs in table 3.1, we fix the global lattice 
size at 1024000 cells. Because of memory limitations in each node, we record 
time using only 16 and 32 active nodes. For this third set, we define speedup 
as the run time using sixteen nodes divided by the run time using multiple 
nodes. Efficiency equals speedup multiplied by sixteen and divided by the 
number of active nodes. For 32 nodes, the number of cells per node is 
512000. Again, the efficiency is high compared to the 16 node configuration. 

Figure 3.17 shows two sets of timing runs using the second method for 
efficiency measurement. The horizontal axes indicate the number of active 
processors: 1, 2, 4, 8, 16, or 32. The vertical axes show the execution time 
in seconds. Hollow squares indicate the maximum reported internode 
communication time per iteration. Because nodes responsible for the 
boundaries of the global lattice may communicate less, nodes report distinct 
internode communication time. Hollow triangles indicate the maximum reported 
time per iteration to perform second order correct boundary updates. Squares 
with diagonal lines indicate the maximum reported time per iteration to 
perform electric and magnetic field updates. Lastly, filled triangles 
indicate the total time per iteration. We used 64000 unit cells per node in 
the runs that produced the values plotted in the top graph. We used 27000 
unit cells per node in the runs that produced the values in the bottom graph. 

Figure 3.18 shows two additional sets of timing runs. We used 8000 unit 
cells per node in the runs that produced the values plotted in the top graph. 
We used 1000 unit cells per node in the runs that produced the values in the 
bottom graph. 

The various components of the iteration loop predictably follow certain 
trends. The communication time per iteration increases with the number of 
processors. The communication time is also a small fraction of the total time 
per iteration and is a small fraction of the time per iteration to perform 
field updates. 

The communication time should hit an upper limit for a given density of 
cells per node because a node can communicate in at most six directions and 
because the amount of communicated information in a given direction remains 
constant for a fixed density. The existence of this upper limit is possible 
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, 

if nodes do not wait while other nodes in the configuration communicate. 
nodes involved in a communication step should first write a packet of 
information, read the packet sent by its neighbor, and, then, continue to send 
and read additional packets. 
communication scheme. 

All 

The current version of PFDTD does not have this 

The second order boundary condition times from the above mentioned plots 
also follow predictable trends. As the number of nodes increases, the time 
per iteration to perform boundary condition updates decreases for node 
configurations of 2, 4, 8, and 16. For 32 active nodes, the time per 
iteration increases from the time reported for 16 nodes. Although the number 
of unit cells remains constant in each node as we increase the number of 
nodes, PFDTD still breaks up the truncation planes among the nodes on the 
periphery of the global lattice. 
decreased times in 2, 4, 8, and 16 nodes. Second order boundary condition 
updates also require internode communication. This communication is the 
reason f o r  the increased time in 32 nodes. 

This division is the reason for the 

The field update times follow predictable trends. There is a slight 
increase in the time per iteration for field updates as the number of nodes 
increases. As the number of nodes increases, a node performs less boundary 
condition updates. Because the number of cells remains constant, the node 
must now perform additional field updates within the volume of the computation 
lattice. 

For a fixed density of cells per node, the four plots indicate that these 
competing times result in faster total execution time per iteration in 4, 8, 
16 and 32 nodes compared to 1 and 2 nodes. By the definition of efficiency 
for this second method of measurement, we can make the statement that for 4, 
8, 16, and 32 nodes PFDTD can perform with over 100% efficiency. With the 
above mentioned improvements in internode communication, this efficiency 
should remain high for arbitrarily large node configurations. 

We also performed timing comparisons with a VAX 750 and a Counterpoint 
System XIX computer. The Counterpoint computer serves as the control 
processor. For approximately 64000 cells in the global lattice, the VAX 750 
takes 47.47 seconds per iteration and the Counterpoint System XIX takes 
89.81 seconds per iteration. The top plot in Figure 3.17 indicates that 1 
node of the hypercube takes 43.14 seconds per iteration for the 64000 cell per 
node case. 

We must qualify the above machine times. Because the VAX and 
Counterpoint are multi-user machines, the runs on these computers were done 
during hours of minimal usage. 
is GFDTD. The code that runs on the hypercube is PFDTD. PFDTD contains all 
the enhancements, which include second order correct radiation boundary 
conditions. GFDTD still uses first order correct radiation boundary 
conditions. 
order, we expected the time per iteration on one node would surpass the time 
per iteration on the VAX and Counterpoint. 
hypercube nodes actually allows a faster execution time. 

The code that runs on the VAX and Counterpoint 

Because second order is computationally more demanding than first 

However, the speed of the 
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SECTION IV 

FREQUENCY DOMAIN CODE (NEC) 

A. INTRODUCTIOM 

The Numerical Electromagnetic Code (NEC-2) is used for the analysis of 
the electromagnetic response of antennas and other metallic structures. This 
code computes the induced current on structures modeled by small wires or 
surface patches. Other near-field or far-field quantities such as electric or 
magnetic fields are evaluated from the solution for the induced current. The 
code combines an integral equation for smooth surfaces with one specialized 
for wires to model a wide range of structures. 
moment, the integral equations are reduced to a matrix equation. 
of the matrix equation is then used for evaluation of the currents on wire 
segments or surface patches. This numerical solution requires a matrix 
equation of increasing order as the structure size is increased relative to 
wavelength. Although there are no theoretical size limitations, modeling of 
structures with dimensions more than several wavelengths is impractical on 
conventional computers due to limitation in file storage or excessive 
computing time. This makes the MEC program a very good candidate for 
conversion to the hypercube. On the hypercube, the fast parallel algorithm 
and large memory can extend the limits of the NEC many times beyond the 
conventional computers. 

By use of the method of 
The solution 

The NEC-2 is a large FORTRAN code containing 77 subroutines and many 
features such as: 

- Computation of scattering or radiation from structures modeled by 
wires and surface patches 

- Effects of perfect or lossy ground 

- Modeling thick wires using an extended thin wire kernel 

- Modeling of loaded structures (including imperfect conductors) 

- Numerical Green's function 

- Modeling non-radiating networks. 

In the parallel NEC, all features of the sequential NEC are incorporated 
except lossy ground, numerical Green's function, and non-radiating networks. 

B. GENERAL THEORY AND ALGORITHM 

The detail description of the theory of the NEC-2 method of moments 
is given in [4-11. Here, that theory is discussed in more general terms 
without any attempt to cover the details. 
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The NEC Program uses both an electric-field integral equation and a 
magnetic-field integral equation to model the electromagnetic response of 
general metallic structures. 
integral representation for the electric field of a volume current 
distribution or the magnetic field of a surface current distribution 
respectively. 
the surface yields a general integral equation where the unknowns are the 
longitudinal currents on wire segments and two perpendicular components of the 
surface current on patches. 
general linear operator as follows: 

These integral equations follow the form of an 

Using these equations and the boundary condition equations on 

These equations can be expressed in terms of a 

N 

L I = E  

where 

L is the linear operator consisting of integral and differential 
operators, 

I is the current on the structure, and 
N 

E represents the excitation to the system such as a voltage source o r  an 
incident field. 

In the NEC program, the operator equation (4-1) is solved by a moments 
method in which the weighting functions, wi, are delta functions: 

where 

r is the integration variable representing a point on the surface of the 
structure, and 

ri is the location of the center of a wire segment o r  a patch. 

This choice of the weighting function makes this a point matching technique. 
The current basis functions are defined separately for wires and patches. 

For patches, the basis functions are simple pulse functions 

P -  j=1, ..., 2M v.(;) = F. I.(r) 
J J J  

4-2 
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where 

IP(~) = 1 for F on patch j and zero otherwise. 
J 

The total current on patches can be expressed as: 

2u 2M 

j =1 j =1 

where 

H is the number of patches. 

For wires, the basis function is expanded 
sine, and a cosine. For segment j the basis f l  

in three terms: 
nction is repre 

a constant, a 
nted by: 

Iw(r) = a + b. sin k(F-F.1 + c cos k(r-ri), j=1, ..., N (4-5) 
J j~ J j 

where 

N is the total number of wire segments, 

rj is the location of the center of segment j, 

k is the free space wave number, and 

aj, bj, and cj are constants 

T A -  is assumed that this basis function has a peak on segment and goes to 
zero at the other end of the segments connected to segment j (Figure 4.1). 

Using the local continuity condition of charge and current, two of the 
three constants in each basis function are eliminated 14-11 and the total 
current can be expressed as: 

j =1 
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SEGMENT i 

& t 1  

Figure 4 . 1  The jth bas is  function for  wires.  



where 

Fi represents the remaining constant. 

Combining the current expansion for patches and wires we get: 

N+2M 
N 

I(;) = F. I.(:) 
J J  

j =1 

where 
P W o r  Ij. I. represents either I 

J 

Substituting equation (4-7) into equation (4-1) and multiplying both 
sides by ui from equation (4-2) and taking the inner product defined by: 

f(r) g(F) da 
S 

yields the linear system of equations: 

N+2M 

F. <u LI.> = <mi, E>, 
J i' J 

j =1 

In matrix form equation (4-9) can be written as: 

(4-7) 

(4-9 1 

(4-10) 

where 

[ A I  in general is a (N+2M)*(N+2M) matrix called the interaction matrix 

[Fl is a (N+2M) * 1 array of basis function amplitudes 
[El is a (N+2H) * 1 array of excitation at the center of all wire segments 

and patches 
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In the parallel NEC program, the matrix A is factored to an upper right 
triangular matrix using the Householder transformation method. 
substitution is then made to compute the basis function amplitudes. 

Back 

For structures having N wire segments and M surface patches, equation 
(4-10) can be written as: 

a c d  b] [:/ -[' H P (4-11) 

where 

Fw and Fp are basis function amplitudes for wires and patches respectively 

E, and $ are the electric field at the center of wire segments and 
magnetic field at the center of surface patches respectively. 

The interaction matrix is now divided into 4 submatrices a, b, c, and d. A 
matrix element aij in submatrix a represents the electric field at the 
center of segment i due to the jth segment basis function centered on 
segment j. 
magnetic field component at patch k due to a surface-current pulse on 
patch Q. Matrix elements in submatrices b and c represent electric fields 
due to surface-current pulses and magnetic fields due to segment basis 
functions, respectively. 

A matrix element dkQ in submatrix d represents a tangential 

For problems where the structure to be analyzed has cylindrical symmetry, 
or planes of symmetry such as the one shown in Figure 4.2, the computation 
time can be reduced significantly. 
cells in the structure, equation (4-10) can be written as: 

In a case where there are Q symmetric 

1 

i A2 A3 A4 

(4-12) 



t Z  

Y 

Figure 4.2 Two examples of symmetry: (a) coaxial rings - 
cylindrical symmetry; (b) rhombic antenna - plane 
symmetry. 
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where now each submatrix Ai is of dimension NPEQ = ( N * + 2 N * )  where N'  and 
M *  are the number of wire segments and surface patches in each symmetric cell. 
This would reduce the time to fill the interaction matrix by a factor l/Q. 
It can also be shown that by taking discrete Fourier transform of equa- 
tion ( 4 - 1 2 ) ,  it can be solved by factoring matrices of order NPEQ 
instead of one matrix of order QNPEQ. This would reduce the factor time by 
1/Q2 and solution (back substitution) time by l/Q. 
Fourier transforms is generally small compared to the time for matrix 
operations. Symmetry also reduces the number of locations required for matrix 
storage by l/Q since only the first row of submatrices need to be stored. 

The time to compute 

In NEC-2 program, the current of each wire segment can be approximated 
In thin wire either by a thin wire kernel or an extended thin wire kernel. 

approximation, the segment current is represented by a current filament. 
limits the use of the thin wire models to 

This 

A 
- > 8  a 

where 

A = the length of each segment 

a = the radius of each segment. 

With extended thin wire approximation, the segment current is represented by a 
current tube which can be used for models with 

A - > 2 .  a 

Another important feature of the NEC-2 program is its capability to model 
structures with lumped or distributed loads which includes modeling with lossy 
wires. This is accomplished by a simple modification to the boundary 
condition equation. For unloaded structures, the general boundary equation is 
as follows: 

where 

fi is the normal vector to the structure. 

ES and E 1  are the scattered and incident fields respectively. 

(4-13) 



For loaded structures, this equation is modified as follows: 

r 1 r 1 

(4-14) 

where 

Zs = the surface impedance 

Js = the surface current density 

C. PARALLEL DECOMPOSITION OF NEC 

1. Structure of the Code 

As discussed in Section IV.A, the purpose of the NEC code is to 
calculate the radiation pattern of an object modeled by wires and patches. 
The user specifies the incident excitation which will be an incident 
electromagnetic wave for scattering problems and a voltage source in the 
object for antenna problems. 

The NEC code solves for current I induced in the object by the excitation 
E. To do this, the unknown current I is expanded in known basis functions 
with unknown amplitudes F (see Section 1V.A). The vector F is found by 
solving the matrix equation A*F=E where E is the excitation vector and A is 
the interaction matrix, also described in Section 1V.A. After the matrix 
equation is solved for F, the current I induced in the object is calculated 
from F and the basis functions. The radiation pattern is then calculated from 
the induced current I. The structure of the sequential VAX code is 
illustrated in Figure 4 . 3 .  

In the NEC code developed for the Mark I11 Hypercube, while the basic 
approach outlined above is unchanged, the actual code structure is changed 
from that of the original sequential VAX code because of changes in the 
algorithm used to solve the matrix equation itself and because now, while most 
of the calculation is done in the hypercube elements (processors), some parts 
of the calculation are performed in the Control Processor (CP). 

The basic structure of the parallel NEC code is shown in Figure 4 . 4 .  The 
structure of the code in the control processor is shown on the left and that 
of the hypercube, or element, code on the right. 

a. Input. The input section of the code is performed in the 
Control Processor. This section includes reading the various input data cards 
from a file, creating the wires and patches from the geometry input cards, 
setting up various parameters regarding the excitation vector, and determining 
from the input cards what output is to be calculated. 
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I INPUT 

FILL A 

c 
FACTOR A 

FILL E 

SOLVE F = A "  E 

CALCULATE I FROM F 

I 
CALCULATE RADIATION PATTERN 

NEXT E 

END 

Figure 4 . 3  Structure of the sequential NEC-2 program. 



CONTROL PROCESSOR HYPERCUBE 

FILL A PASS DATA 

CALCULATE I FROM F 

. I  

PASS F 
4 

NEXT F 

CALCULATE RADIATION PATTERN 1 
END - 

ti 
FILL E I I N E X T E  

I TRANSFORM A&Es I 

NEXT E 

Figure 4 . 4  Structure of para l l e l  NEC program. 
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First, the input data relating to setting up and solving the matrix 
equation is read and processed. 
excitation information. If the scattered radiation pattern is to be 
calculated for an electromagnetic wave incident from several different angles, 
NEC must solve the matrix equation A*F=E for the same A matrix but several 
different E vectors, corresponding to the different angles of incidence. In 
this case, the parameters needed for filling all of these E's are calculated 
at the start in the CP in the new subroutine ETMFILL. All of the information 
needed for filling the A matrix and the E vectors is then passed to the 
hypercube via the CP subroutine CPCOMM and the hypercube main program NECELT. 
At this point, the CP sits idle until it receives the solution vector F for 
the first excitation vector E. 

This includes all of the geometry and 

b. Matrix Fill. After receiving the initialization data from the 
CP, the element code first calls the subroutine CMSETN which handles the fill 
of the interaction matrix A. The parallel fill of this matrix is described in 
Section IV.C.2 below. If there is symmetry in the modelled object, NEC can 
make use of this to considerably reduce the order of the matrix equation to be 
solved. For such symmetric cases, the discrete Fourier transform of the 
matrix is also done in parallel at fill time in the subroutine CMSETN. 

c. Excitation Fill. After the matrix fill, the excitation E is 
calculated via the subroutine ELTETM, described in Section IV.C.3. If the 
matrix equation is to be solved for multiple right-hand sides, all E vectors 
are filled at this time through multiple calls to this subroutine. 

For cases with Q symmetric subsections, the Q-point discrete Fourier 
transform of the E's is next performed by the subroutine ELTDFT. 
calls to this subroutine are made for the case of multiple excitation vectors. 

Multiple 

The E's and their discrete Fourier transforms are calculated here before 
the Householder transformation is called because they also must be 
transformed. Since the Householder transformation is one of the most time 
consuming portions of the code, all E's (and their discrete Fourier transforms 
for symmetry cases) must be available at this stage so that the transformation 
of A need only be done once. Note that the code structure here is quite 
different from the original sequential NEC. 

d. Householder Transformation. The Householder transformation of 
the A matrix and all the E vectors is performed after the fill of E and A. 
The parallel Householder algorithm is described in Section IV.C.4. It 
transforms the original matrix to an upper triangular matrix so that the 
resulting matrix equation can be solved by back substitution. 

The main element program NECELT calls the subroutine FACTRSN which then 
performs the transformations of A. For cases with Q-fold symmetry, the 
transformation is done separately on the Q symmetric sections of A and of 
all the E's. Thus FACTRSN makes Q calls to the Householder routine 
HHNFACTR. On each call, a symmetric subsection of A is transformed along with 
the corresponding symmetric sub-vectors of all the excitation vectors, E. 
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Thus, for multiple right-hand sides, the Householder transformation of A (or 
each of its symmetric sub-sections) is done only once. 

e. Matrix Equation Solution. After the Householder transformation 
of the A matrix and the E vectors has been completed, the transformed matrix 
equation is solved by back substitution for one E vector at a time. The back 
substitution method is described in Section IV.C.4. 

The solution is done in the subroutine BSOLVE which solves the matrix 
equation separately for each of the symmetry subsections. BSOLVE is 
called by the subroutine ELTSOLN. For symmetric cases, ELTSOLN performs the 
inverse discrete Fourier transform of the solution vector F. 

After the solution vector F is found for a particular E, this vector is 
passed back to the CP. For cases with multiple right-hand sides, the 
hypercube then makes another call to BSOLVE to solve the transformed matrix 
equation for the next E while the CP is processing the previous solution 
vector F. 

After the hypercube finds and passes back the solution vector F for the 
last excitation E, the hypercube code terminates. 

t 

f. Current Calculation and Output. When the CP receives its first 
solution vector F, the induced current I is calculated sequentially from F by 
the subroutine CAEC. The CP then calculates whatever output was specified in 
the input data, e.g., near fields and far field radiation patterns, and writes 
the output to a file. 

For cases with multiple right-hand sides, the CP then sits idle until it 
receives the next solution vector F. When the output from all excitations has 
been found, the CP code terminates. 

2 .  Interaction Matrix Fill 

The interaction matrix A is shown in terms of its four submatrices 
a, b, c, and d in equation (4-11). In the NEC program, the elements of these 
submatrices are computed by subroutines CMJW (wire to wire interaction), CMSW 
(surface to wire interaction), CMWS (wire to surface interaction), and CMSS 
(surface to surface interaction), respectively. 
interaction matrix is computed by evaluating the electric field or magnetic 
field at the center of an observation segment (a segment can be a wire segment 
o r  a surface patch) due to the basis function centered on another segment 
called the source segment. Figure 4.5 graphically depicts this process for 
wire to wire interaction. Computation of each element of the interaction 
matrix is therefore accomplished in three steps: 

An element Aij of the 

(1) Defining a source segment (identified by index j) and computing some 
data related to that segment 
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Figure 4.5 Interaction of wire segments i and j. 



(2) Defining an observation segment (identified by index i) and 
computing data related to that segment 

( 3 )  Finally, evaluating either the electric field o r  magnetic field 
using the information obtained in the previous steps. 

The order in which the first two steps are taken differs depending on the 
submatrix that is being filled. 

In the sequential NEC Program, the interaction matrix is filled inside a 
double DO-loop with index variables i and j, where i and j go from 1 to NT 
(total number of segments). Figure 4 .6  shows a block diagram for the 
sequential code. In the first DO-loop a source segment j is picked and the 
current expansion functions on that segment and adjacent segments are 
computed. In the second DO-loop an observation segment i is picked and the 
electric field o r  magnetic field on that segment is computed depending on if 
it is a wire segment o r  a surface patch. Consequently, in row i, column j and 
columns corresponding to segments connected to segment j are filled. 

In the parallel NEC program several processors are used to fill the 
interaction matrix. Therefore, each processor will be responsible for filling 
a part of the interaction matrix. To minimize communication between 
processors, each processor is made responsible for filling a number of rows of 
the interaction matrix entirely. The rows are assigned to the hypercube 
processors according to the chart shown in Figure 4 . 7 ,  that is for a cube with 
np processors, processor n will compute rows n, n+np, n+2*5,, . . .  etc. 
With this distribution scheme, if the number of rows are equal to a multiple 
of the number of processors, then all processors will fill the same number of 
rows. Otherwise, some processors fill one row more than the rest. 

Two parallel codes are deveioped f o r  matrix fill. In the first code, 
called the source loop sequential code (SLSC), only the observation loop is 
computed in a parallel manner. The data in the source loop is computed the 
same as in the sequential NEC program and therefore some redundant information 
is processed in the cube causing a reduction in the efficiency. On the other 
hand, with this algorithm, there is no need for the cube processors to 
communicate with each other which helps increase the efficiency. 
diagram of the code with sequential source loop is shown in Figure 4-8. Here, 
the program in each processor ( o r  node) is basically the same as in the 
sequential code except in the observation loop where the index i takes on 
different values depending on the processor in which the code is running. 
Therefore each processor fills only the rows which are assigned to it. 

A block 

The second code, called source loop parallel (SLPC), is an extension of 
the source loop sequential program. A block diagram of this code is shown in 
Figure 4 . 9 .  Here, the observation loop is computed like the SLSC but to avoid 
processing redundant information, the source loop is made parallel as well as 
the observation loop. This is implemented for wires only since the source 
information for patches can be computed faster than it can be communicated at 
all times. In this program, each processor will compute the source data for a 
few segments only. For example, node m computes source data for segments j=m, 
m+?, m+2*np, . . . .  
able but divided among all the nodes. 

Therefore, the data for all source segments is avail- 
Hence, for a processor to obtain the 
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input 

1 
[ Generate Data 1 

1 
0 Start source loop 

compute current expansion 
function on segment - j 

0 Start observation loop 

Do 1 i = 1, NT 

compute E-field or H-field 

fill row j, column j and columns 
corresponding to segments connected 
to segment j 

( on segment i 

I - 
1 continue 

0 Compute right-hand side 
0 Solve equations 
0 Compute currents and fields 

Figure 4.6 Sequential interaction matrix fill. 
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ROW 1 

ROW 2 

ROW 3 

ROW np-1 

ROW np 

RQW np+l 

ROW np+2 

ROW np+3 

0 
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0 

INTERACTION MATRIX (A) 

0 
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0 
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Figure 4.7 Assignment of rows to hypercube processors. 
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Compute current expansion 1 function on Segment - j 
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1 
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Compute currents and fields 

Figure 4.8 Parallel interaction matrix fill program - source loop sequential. 
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Figure 4.9 Parallel interaction matrix fill program - source loop parallel. 
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source data for all segments, it has to receive some of that data through 
communication channels from other nodes. For this purpose, the nodes are 
mapped into a one dimensional periodic lattice (or placed on a ring) (Fig- 
ure 4.10). With this arrangement, each node can send or receive information 
from its two neighboring processors only. The information flow is set to be 
counterclockwise and therefore, node m will receive data from node m-1 but 
sends data to node m+l. 

1 3. Parallel Fill of the Excitation Vector 

To better describe the source loop parallel algorithm, consider the 
example shown on Figure 4.11. 
being computed by a 4-node hypercube. NOW, let's see what happens in node 1 
at different times after the source loop is started at time to: 

It is assumed that a problem with 6 segments is 

- At time tl, node 1 computes source data for segment j=1. 

- At time t2 it sends data for j=l to node 2 and receives data for 
j=4 from node 4. 

- At time t3 it sends data for j=4 to node 2 and receives data for 
j =3 from node 4. 

- At time t4 it sends data for j=3 to node 2 and receives data for 
j=2 from node 4 .  

- At time t5 all nodes including node 1 compute source data for 
segments j =5,6. 

This means that if there is a remainder in the division of the number of 
segments by the number of processors, the data for the remaining segments is 
computed sequentially. Figure 4.11 explains the overall flow of information 
for the above example. 

NEC solves the matrix equation A*F=E where the excitation vector E 
and the solution vector F have NT=N+2*M elements for an object modeled with 
N wires and M patches. For objects with no symmetry, the interaction matrix A 
is NT*NT. For an object with !k symmetric subsection, A has NT columns 
and NPEQ rows where NF'EQ=NT/Q as discussed in Section 1V.A. 
solution vector F is found, it is written over the E vector and so the 
parallel decomposition of E also determines the parallel decomposition of F. 

When the 

The parallel decomposition of the E fill is determined by the parallel 
decomposition of the matrix fill. For cases with no symmetry, the only 
restriction on E is that the i-th element of E be in the same processor as the 
i-th row of A so that the back-substitution algorithm can proceed without the 
necessity of fetching the needed element of E from a different processor. 
Thus, the elements of E are "dealt out" to the processors as the rows of A 
were (see IV.C.2): The first element goes to the first processor, the second 
element to the second processor, the third element to the third processor 
etc., returning to the first processor after the first np elements have been 
dealt, where np is the number of processors. The deal proceeds until all 



Figure 4.10 Node arrangement for source loop paral le l  program 
i n  a 32-node hypercube. 
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0 Assume number of segments to  be: 

N = 6 ; J = 1 , 6  

node 1 node 4 

0 Source segment data is either computed in nodes or transferred to  nodes in the 

following sequence in 

- Time '0 start source loop 

- Time t1 compute source segment data for J = 

- Time t2 send data for J = Receive data for J = 

- Time t3 send data for J = Receive data for J = 

- Time t 4  send data for J = { 4 t o  node Receive data for J = 
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2 
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3 4 
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2 
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Figure 4.11 Example - parallel source loop algorithm on 4 nodes. 
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NT elements of E have been dealt. 
elements 1, l+"p, 1+2*9,, ...; the second processor with 2, 2+9, 2+2*np, ..., 
etc. 

Thus, the first processor ends with 

For cases with symmetry, the "deal" of E changes somewhat, although the 
parallel decomposition is still determined by the decomposition of A and the 
requirements of the back substitution algorithm. As discussed in 
Section 1V.C.. the code now solves Q matrix equations of order NPEQ=NT/Q 
where Q is the number of symmetric submatrices of A. In these cases, E is 
also composed of k symmetric subvectors of length NPEQ. The NPEQ rows of A 
have been dealt out as in the case with no symmetry. Now, the % syrmnetric 
subvectors are dealt out separately, always assigning the first element of the 
subvector to the first processor, the second element of the subvector to the 
second processor, etc., until the NPEQ elements of the subvector have been 
dealt (see Figure 4.12). In the end, the corresponding elements of each 
subvector of E are in the same processor; e.g., elements 2, 2+NPEQ, 2+2*NPEQ 
are in the second processor. The number of elements in each processor, then, 
is always a multiple of !2. 

For cases with symmetry, E, as well as the interaction matrix A, is 
expanded in a discrete Fourier series immediately after it is filled. At 
solution time, the elements of A, E and F are the coefficients of this 
expansion. 
decomposition of A, this decomposition has the added feature that all of the 
elements of E needed to perform the discrete Fourier transform have been 
assigned to the same processor. Thus, no internode communication was 
necessary to perform the discrete Fourier transform of E and, likewise, to 
perform the inverse discrete Fourier transform of the solution vector F. 

Although the parallel decomposition of E was determined by the 

4. Factorization and Solution 

The Householder transformation is the technique used for the 
inversion of the interaction matrix 14-21. This inversion method is 
well-suited to a parallel implementation because it operates on columns of the 
matrix where each column's set of computations is independent of the 
computations performed in the other columns (Figure 4.13). As the inversion 
progresses, the matrix is factored by a series of orthogonal transformations 
producing an upper right triangular factored matrix and a lower left triangle 
containing zeros (Figure 4.14). The right hand side excitation vectors 
undergo the same series of transformations at the same time that the 
interaction matrix is transformed. 
for that matter, even explicitly compute) the transformation matrix. 

In this way there is no need to store (or, 

The factorization subroutine is written in the C programming language 
From rather than FORTRAlJ which is used for most of the parallel NEC code. 

benchmark tests of the relative speed between C and FORTRAN, C has been found 
to perform about 15% faster than FORTRAN for the same instructions when the C 
program utilizes pointers for array access and uses register variables. 
Therefore, since the factorization portion of the NEC-2 code is potentially 
the most time consuming and the parallel factorization represents new code, it 
has been decided to implement this factorization in C. 
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Figure 4.12 Assignment of processors for an object with 3-fold 
symmetry and I segments. 
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Figure 4.13 The Jth transformation. 
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, 

For matrix A (m,n), the Householder Transformation is: 

TA = 

T 

where 

T is the orthogonal transform matrix 

are the diagonal elements of the transformed matrix 

a are the transformed elements of the A matrix 
k 

Figure 4.14 Householder transformation. 



a. Distribution of Data on Input. The interaction matrix enters 
the factorization subroutine HHNFACTR having been distributed by rows to the 
processors in the subroutine CMSETN. Since the Householder transformation 
operates on columns of the matrix, the first step in the parallel 
implementation is to transpose the distribution of the data; i.e., the 
processors become responsible for columns rather than rows. This data 
redistribution is accomplished by utilizing a ring mapping of the processors. 
Each processor loads all of its row data into a communication buffer and 
transmits it to its left-hand neighbor while receiving data in a similar 
buffer from its right. Each processor then picks off column data destined for 
its processor. This sequence continues for 5 - 1  steps (where 
number of processors being used) until each processor has all 2 o its column 
data. This initial shuffling is more advantageous than intermittent shuffling 
because all processors perform the transposition in lockstep and with the same 
amount of data. In the Crystalline Operating System (CrOS) it is important to 
minimize the communication synchronization time in order to optimize the 
parallel algorithm's performance. Columns are assigned to processors in the 
same fashion as playing cards are dealt from a deck. 
have no more than one difference in the total number of columns which they 
will process. The data within a column is stored contiguously in order to 
minimize the distance of memory accesses and computation of array offsets. 

is the 

Therefore all processors 

The excitation vector components calculated within the subroutine ELTETM 
are distributed to correspond to the distribution of the row components in the 
interaction matrix. Since each of these vectors will be treated as a column 
in the transformation, each right-hand side vector is assembled in the 
assigned processor. The assignments are determined by continuing the dealing 
method for column assignments thereby again assuring optimum load balance. 

b. Factorization. The Householder transformation consists of NPEQ 
transformations (where NPEQ is the number of rows in the interaction matrix). 
For the first transformation, the data in the first column is distributed to 
all processors via a BROADCAST call. Each processor uses this column to 
determine the new elements for its columns as well as those elements which it 
contributes to the first row of the factored matrix. At the conclusion of the 
first transformation, the interaction matrix contains new columns for columns 
two through NPEQ; column one will no longer be active. In the second 
transformation, the processor which has column two distributes it to all other 
processors. Again each processor computes the new elements for its 
interaction matrix active columns as well as the elements of the second row of 
the factored matrix for which it is responsible. The transformation 
progresses, each time with one less column active, until NPEQ transformations 
have been performed and the complete upper right triangular matrix is 
constructed (Figure 4.15). 

In order to economize on storage the newly computed factored matrix row 
elements are overwritten on the inactive portion of the transformed 
interaction matrix. To do so,  since the elements are distributed among the . 

processors at the end of a transformation step, this data is combined and 
assembled in the processor which will eventually do the solution for that 
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F 
The factored matrix A after the kth Householder Transformation: 

l o  
To minimize storage, the A matrix columns are stored as rows. Then as factoring 

T F 
progresses the A and A are merged: 

TkA = . 

Figure 4/15 Householder transformation after kth transformation. 
AT is the working matrix which is discarded after 
the factorization. 
upper right triangular matrix. 

AF is the newly factored 



row. This row assignment matches the earlier row assignment in CMSETN. At 
the end of each transformation the newly calculated transformed elements of 
the excitation vectors are also replaced in the source processors again 
matching the earlier row assignments from ELTETM. At the conclusion of the 
factorization subroutine "NFACTR, the data is in position for the back 
substitution. 

c. The Solution. Back substitution is used to calculate the 
solution for each right-hand side excitation vector. Each processor 
calculates the solution for the rows for which it is responsible. At the 
conclusion of each row, the solution elements are broadcast-to the other 
processors. These solutions become multiplicands for subsequent steps of the 
solution. At this time the solution performs nearly sequentially, but over 
the distributed data. Once the Mercury asynchronous operating system (which 
will permit queuing of asynchronous messages) extends to the FORTRAN or hybrid 
codes such as parallel NEC, we can anticipate a modest speedup over the 
current back substitution method. 

D. NUMERICAL RESULTS 

The numerical results obtained from the parallel NEC are extensively 
checked with results from the original NEC-2 (sequential NEC) and an excellent 
agreement is seen for every case. 
or patches, either separate or combined, are used is discussed here. Also 
examples are shown for validation of the code when extended thin wire 
approximations or loading are employed. 

The result for three problems, where wires 

1. Monopole on a Pedestal Over Perfect Ground 

This problem is modeled by as many as 290 wire segments. 
pedestal is modeled by several radial 2-wire sections (or ribs) as shown in 
Figure 4.16. Each wire, in turn, is divided into several segments. A quarter 
wave monopole is placed at the center of the pedestal and is fed by a voltage 
source at the bottom. The far field radiation pattern of this monopole, in 
Plane (g=O, is shown in Figure 4.16 where I$ and 0 are the standard 
azimuthal and polar angles in the spherical coordinate system. The solid line 
is from the sequential code while the dots show the results from the parallel 
code. 
codes. Note the bend in the pattern which is due to the presence of the 
pedestal. By increasing the number of ribs in the wire model, the effect of 
the pedestal will become more significant. 

The 

For all practical purposes perfect agreement exists between the two 

2. Scattering of a Plane Wave by a Conducting Sphere 

The conducting sphere is modeled by patches only. In the example 
shown on Figure 4.17, the sphere is modeled by 80 patches without taking 
advantage of the symmetry. The incident field is a uniform plane wave 
traveling in -x direction and is polarized in -2 direction. The far field 
scattering pattern of the sphere, for plane +=O,  is shown in Figure 4.17. 
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Figure 4.16 Radiation pattern of a quarter wave monopole on a pedestal over 
perfect  ground; +O cut .  The structure is modeled by 130 wire 
segments. 
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Figure 4.17 Scattering pattern of a sphere with ka = 3.0 in +=O plane. 
Incident field is a plane wave traveling in -x direction. 
The sphere is modeled by 80 patches. 
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The solid line shows the result from the sequential NEC code, while the dots 
show the result from the parallel code. Like the previous example very good 
agreement exists here. For this example ka = 3.0 

I 

where 

2n k = -  
A 

A = the plane wave wavelength 

a = the radius of the sphere. I 
3 .  T Antenna On a Conducting Box Over Perfect Ground 

This problem is modeled by both patches and wires. The box is 

The T antenna is fed by a voltage 
modeled by 12 patches and the T antenna by 8 wire segments. This is the same 
as Example 4 in the NEC manual [4-11. 
source at the bottom. The radiation pattern of this antenna, for +=O plane, 
is shown in Figure 4.18. The solid line is the result from the sequential NEC 
and the dots show the solution from the parallel NEC. 

4. Extended Thin Wire and Loading 

To show the effect of using the extended thin wire kernel and 
loading, the monopole on a pedestal of Section IV.D.l is employed. The 
structure is modeled by 70 segments. 
for +O plane, is shown in Figure 4.19. Here, the solid line is for the 
case where thin perfectly conducting wires are used, dots show the result foe 
thin aluminum wire (loading), and A marks show the solution for the case 
where thick wire is used with extended thin wire kernel. All these fields are 
calculated by the parallel code and excellent agreement with the sequential 
code is checked for every case. It can be noted that the effect of the 
pedestal on the pattern is less significant when a fewer number of ribs are 
used (10 ribs here compared to 15 ribs in the example shown in Figure 4.16). 
Also, use of extended thin wire, even with a lower number of ribs, models the 
pedestal much more realistically than the thin wire kernel modeling of Section 
IV.D.l. This is evident from the strong interaction of the fields with the 
pedestal shown by A marks in Figure 4.19. 

The radiation pattern of the monopole, 

E. PERFORHANCE 

To evaluate the performance of the NEC parallel program, the CPU time 
taken to run this code on the Mark I11 Hypercube is compared with that on a 
VAX 111750 computer. Several parameters, such as the time taken to fill or 
factor the interaction matrix, and the speedup factor for a different number 
of nodes used in the hypercube or a different number of segments used in the 
structure model, are analyzed. 
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FOR @ = 0 

Figure 4.18 Radiation pattern of a T antenna on a box over 
perfect ground in @=O plane. 
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Figure 4.19 Radiation pattern of monopole on a pedestal over perfect ground 
in +=O plane. 



1. Timing 

To analyze the timing performance of the parallel NEC program, two 
examples are considered: 

a. Scattering by Sphere. The sphere of Section IV.D.2 is modeled 
by 120 surface patches without taking the symmetry into account. 
interaction matrix for this problem is of size 240 * 240. The time to fill 
and factor this interaction matrix as well as the speedup factor are shown in 
the tables of Figures 4.20 and 4.21, respectively, as a function of the number 
of nodes used in the hypercube. 

The 

The times taken to do the fill and factor on one processor are 40.5 sec. 
and 3469 sec., respectively, while the same times are 25 sec. and 895 sec. for 
the VAX 11/750 computer. 
hypercube processors is almost equal to the VAX 11/750 processor, there is 
quite a large difference between the times shown above. For the fill time, 
the reason is that for each patch there are two equations and therefore two 
rows in the interaction matrix. In filling these rows sequentially there is 
some information that is computed once and then shared between the two rows. 
However, in the parallel code, since the two rows corresponding to each patch 
are in different processors, it is necessary to compute that information for 
every row in every processor which results in processing redundant 
information. For the factor time, the Householder transformation might be 
inherently slower than the LU decomposition method used for the sequential 
code resulting in a slower parallel code on one processor. Additional data 
comparing timing and the speed increase factor of the 32-node hypercube with 
the VAX is shown in Table 4.1. 

Despite.the fact that the speed of the Mark 111 

The speedup factors for filling and factoring the interaction matrix are 
plotted in Figure 4.22. The speedup factor is defined as: 

Time to run program on one processor 
Time to run program on Np processors Speedup factor = ' 

For this problem the top speedup factor (for 32 nodes) is 29 for filling and 
- 23 for factoring of the interaction matrix. 

It should be mentioned that usually the factor and fill time take more 
than 90% of the total time in the NEC program. Therefore the time taken to 
process the input, to solve the factored matrix, and to compute the far or 
near fields is insignificant compared to the total time. 

b. Monopole on a Pedestal. The monopole on a pedestal of 
Section IV.D.l is modeled by 20 ribs and a total of 290 segments here. 
Therefore, the interaction matrix is of the size 290 * 290. The fill and 
factor times vs. number of nodes are shown in the tables of Figures 4.23 and 
4.24, respectively. Due to the fact that this problem does not fit on one 
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DIMENSION OF 
CUBE 

2.6 

1.4 

2 

15.58 

28.93 

3 

4 

5 

NUMBER OF 
NODES 

1 

2 

4 

8 

16 

32 

FILL TIME, 
sec 

40.5 

20.5 

10.3 

5.2 

SPEEDUP 
FACTOR 

1 

1.98 

3.93 

7.79 

Figure 4.20 Time and speedup factor for filling the interaction matrix of 
a sphere modeled by 120 surface patches vs. the dimension of 
the hypercube. Matrix size is 240 * 240. 
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DIMENSION OF 
CUBE 

1 0 3469.0 

1 I 
4 

8 

16 

32 

2 I 907.0 

476.0 

259.0 

151 .O 

3 I 
4 I 
5 

1 
NUMBER OF 

NODES 
FACTOR TIME, 

sec 

I 

2 1781 .O 

SPEEDUP 
FACTOR 

I 

I 1.95 

I 7.29 

13.39 

I 22.97 

Figure 4.21 Time and speedup factor for factoring the interaction matrix 
of a sphere modeled by 120 patches vs. the dimension of the 
hypercube. Matrix s i z e  is 240 * 240. 
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0 

TIME ON ONE NODE 
SPEEDUP FACTOR = ON Np NODES 

10 20 30 

NO, OF NODES ON MARK Ill HYPERCUBE 

Figure 4.22 Speedup factor for filling and factoring the interaction matrix 
for scattering by sphere vs. number of nodes used. 
Matrix size is 290 * 290. 
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FILL TIME, sec 

DIMENSION NUMBER SOURCE-LOOP SOURCE-LOOP 
OF CUBE OF NODES SEQUENTIAL PARALLEL 

0 1 1725.0 1725.0 

1 2 876.0 91 5.3 

2 4 445.5 506.6 

3 8 230.3 292.6 

4 16 122.6 158.7 

5 32 68.8 81.5 

SOURCE-LOOP 
PARALLEL 

SPEEDUI 

SOURCE-LOOP 
SEQUENTIAL 

1 

1.97 

3.87 

7.49 

14.07 

25.07 

i 1.88 

Figure 4.23 Time and speedup factor f o r  filling the interaction matrix of 
the monopole on a pedestal vs. the dimension of the hypercube. 
Results from source-loop parallel and source-loop sequential 
codes are shown. Matrix size is 290 * 290. 
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5 

Figure 4.24 Factor time and speedup factor for. interaction matrix of the 
monopole on pedestal vs. the dimension of the cube. Matrix 
size is 290 * 290. 

NUMBER OF FACTOR TIME, SPEEDUP 
NODES sec FACTOR 

1 61 10.0 1 

2 31 41 .O 1.95 

4 161 5.0 3.78 

a 841 .O 7.27 
~~ 

16 454.0 13.46 

- _  

32 259.0 23.59 . 
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node, the fill and factor times are computed by extrapolation of the results 
from a higher number of nodes. 

For the fill time the two parallel codes discussed in Section IV.C.2 are 
used. It is evident that for this problem, the source-loop sequential code is 
faster than the source-loop parallel code for any number of nodes used. This 
is due to the fact that, for this example, processing of the information in 
the source loop takes less time than it takes to communicate that information 
to other nodes. 
1830 sec. and 1693 sec., respectively. The fill time is very close to the 
time on one node due to the fact that the parallel program for wires on one 
node is almost identical to the VAX sequential code. However, the factor time 
is quite different for the same reason as discussed in Section IV.D.l. 
Additional data for timing and speed increase factors for the 32-node Mark I11 
Hypercube to those for the VAX 111750 are shown in Table 4.2. 

The fill and factor time for the VAX 11/750 computer are 

The speedup factor for filling and factoring the interaction matrix vs. 
the number of nodes used in the hypercube is shown in Figure 4.25. These 
curves are almost linear; however, the SLSC shows a better speedup factor 
across the range for the number of nodes than the SLPC. 

2 .  Fixed Problem 

When analyzing how a particular algorithm scales for different 
hypercube sizes, we need to keep the size of the problem fixed within a node. 
If the total problem size remains the same, the amount of work assigned to 
each processor decreases as the number of processors in use increases. Then, 
as a result, a significant portion of the time is spent idly waiting for other 
processors to complete or communicate rather than performing useful work. 

To demonstrate how the FILL algorithm of parallel NEC scaled with the 
size of the hypercube, the input data size was determined so that for each run 
all processors received 5,000 elements, that is 

2 n 
No. Processors = 5000 

As the number of elements in a row increases, the number of rows for which a 
processor is responsible decreases. Figure 4.26 shows the results for the 
runs on the hypercube beginning with a dimension of 0 (1 node) and proceeding 
up to a dimension of 5 (32 nodes). As the number of processors increases, the 
parallel algorithm demonstrates excellent scalability. The slight increase in 
time required for larger size hypercubes is expected. The number of elements 
per node is the product of NT (the number of elements in a row of the 
interaction matrix) and the number of rows in that node. During the fill 
there is an initial computation which is performed NT times. As the number 
of rows per node decreases, the size of NT increases and, as such, slightly 
affects the overall time. 
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Figure 4.25 Speedup factor for fill and factoring the interaction matrix 
of the monopole on a pedestal vs. number of nodes used. 
Results from the source-loop parallel and source-loop sequential 
codes are shown for matrix fill. Matrix size is 290 * 290. 
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Figure 4.26 Scaling of the performance of the parallel fill 
algorithm where the problem size per node remains fixed 
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It is more difficult to analyze how the factor algorithm of the parallel 
NEC code scales with the size of the hypercube. 
case data set based on the fact that factorization algorithms are of order n. 
However, as the number of elements in the overall matrix increases for larger 
hypercubes, so does the number of transformations required to perform the 
factorization. Each transformation is preceded by the BROADCAST of the 
pivotal column as well as some ancillary data. 
sizes of hypercubes would be a comparison of problems with considerably 
different computation and communication requirements. 

One could construct a fixed 

The results from different 

3. Analysis of Performance 

In using the two parallel codes, it is observed that for the 290 
segment monopole on a pedestal, the source-loop sequential code (SLSC) 
consistently achieved lower fill time than the source-loop parallel code 
(SLPC). Even though better time was obtained from SLSC for most other 
examples that were tried throughout this study, there are some special cases 
where SLPC yields lower fill time. To understand this phenomena better, we 
should study the source loop in more detail. 
Section IV.C.2 the source segment information is computed inside a DO-loop 
with. index variable J, where J goes from 1 to N (the total number of 
segments). 
process this information can be substantial and therefore the SLPC was 
developed to communicate the data, instead of computing it sequentially in 
every element, as in the SLSC. For wire problems, each wire segment can be 
connected to several other segments as shown in Figure 4.27. In general each 
segment can be connected to nseg number of other segments. Since the basis 
function on each segment is extended over the adjacent segments, the number of 
local boundary equations to be solved for eliminating two out of three ' 

coefficients in each basis function increases as the number of connected 
segments increases. In most problems wire junctions have only 2 wires 
connected to them (simple junction) and therefore source-loop information can 
be processed very fast without any need to use communication between nodes 
(SLSC should be used). 
junctions one has to look at the ratio of the number of these junctions to the 
number of simple junctions as well as the number of nodes used in the 
hypercube to select either SLSC or SLPC. Note with a higher number of nodes, 
more communication is done. To understand this better, the monopole on 
pedestal example is modeled with a different number of wire segments but with 
20 ribs in modeling of the pedestal. Therefore, only one multi-wire junction 
with 21 segments is always present and by changing the number of segments, 
only the number of simple junctions changes. 
32-node hypercube, for maximum communication effect, and the fill time 
obtained from SLSC and SLPC are plotted vs. the total number of segments in 
the model as shown in Figure 4.28. 
segments less than 90, the SLPC is faster which is due to a relatively small 
number of simple junctions. As the number of segments is increased above 90, 
the number of simple junctions is increased and since, for these junctions, 
computing the source information is faster than communicating it, the SLSC 
yields better fill time. 

As was discussed in 

For problems where the structure is modeled by wires, the time to 

However, if a problem is modeled with multi-wire 

These models were run on a 

It can be seen that for a number of 
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Figure 4.27 General wire segment connection. 
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Figure 4.28 Time for interaction matrix fill for monopole on 
a pedestal vs. the number of segments in the model for 
the source-loop parallel and source-loop sequential 
codes. 32 nodes used. 
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F. OPTIMIZATION 

The JPL/Caltech Mark I11 Hypercube project is a research and development 
effort in developing parallel computing systems. Along with the hardware 
development is the corresponding software effort to create operating systems 
and software support tools to aid the applications programmer. Two operating 
systems have been developed. One uses synchronous message passing requiring 
two nodes to be synchronized at the time of communication. It is called the 
Crystalline Operating System (CrOS). The other is Mercury which allows 
asynchronous communication utilizing message buffers for queueing up incoming 
and outgoing messages. At this point in the software development CrOS is 
supported for both C and FORTRAN, however Mercury does not yet extend to 
FORTRAN or hybrid codes. One possible future optimization for the parallel 
WEC code is the addition of some Mercury communication capabilities to such 
code components as the back substitution for solution of the equation. 

Further optimizations of communication calls are also being developed. 
For instance, the COMBINE function which combines data from all nodes using 
some programmer-specified function such as an exclusive OR currently 
interrupts the application processor in the course of the instruction. This 
instruction is also limited to manipulation of no more than 512 bytes of 
data. Operating system software optimization is being made to locate this 
instruction solely in the communication processor and to have it operate on an 
arbitrary number of bytes. 

Hardware developments for the Mark I11 Hypercube continue as well. 
Currently the hypercube uses the Motorola 68881 floating point processor. A 
daughterboard addition is being implemented to house the powerful Weitek 
floating point accelerator chip set. The current floating point processor 
delivers 60-120 KFlops per node. Preliminary tests of the new daughterboard 
demonstrate up to 10 MFlops per node of performance. These daughterboards 
will be added to the existing Mark I11 nodes during the fall of 1987. 

Additional optimizations to the current parallel NEC code can be 

I 
considered: for instance, the identification of the most time consuming 
FORTRAN portions of the parallel code and conversion of these segments to the 
C programming language. When using pointers to access arrays and inserting 
frequently-used variables into registers, C has been demonstrated to achieve a 
speedup over the analogous code written in FORTRAN. In the current version, 
only the matrix inversion and the complex arithmetic routines are in C. 

Another fairly minor change can be made to the parallel NEC code which 
would increase its efficiency somewhat. At present, the calculation of the 
current vector I from the basis function amplitude vector F is being done in 
the CP in the original sequential subroutine CABC. The part of the subroutine 
which calculates the current in the patches is not easily done in parallel 
because it involves taking the two tangential patch current components and 
relating them to three x, y and z components, thus changing the size of the 
solution vector. The part of this subroutine which calculates the current in 
the wires can easily be done in parallel in the hypercube. Thus, the part of 
the subroutine dealing with the patches could be separated and left in the CP 
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code, and the part dealing with wires moved to the hypercube code. This would 
(1) decrease the time for this calculation and ( 2 )  lessen the chance that, for 
multiple E cases, the hypercube would have to sit idle while the CP performs 
the current and radiation calculations (see Figure 4.4). 
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SECTION V 

TEST CASE: SCATTERING FROM A CONDUCTING SPHERE 

In this section, results from both the parallel NEC and PFDTD codes are 
presented for the same sponsor-selected test case: scattering from a 
perfectly conducting sphere. A comparison is made of the results for both 
near fields and radar cross sections. Results are also compared to the exact 
(analytic) solution. 

A. DESCRIPTION OF THE TEST CASE 

The radius of the perfectly conducting test sphere is chosen to be 
a=47.714651 m. The incident wave is a linear polarized plane wave with wave 
vector k in the -x direction, an electric field of 1 V/m in the -z direction, 
and a magnetic field of 2.654e-03 A/m in the -y direction (see Figure 5.1). 
The sphere is in a vacuum. Near electric and magnetic fields are compared for 
ka=3.0 along a line in a plane in front of the sphere, behind the sphere and 
below the sphere. The radar cross sections are compared for ka values from 1 
to 4.5 in steps of 0.5. 

1. Test Case for Parallel FDTD 

For the test cases with ka=1.0-3.5 PFDTD uses a 74 x 74 x 74 grid 
with a cell size of 2.6508 x 2.6508 x 2.6508 m. The total domain is 196 x 196 
x 196 m. For ka=3.0 and the above test sphere, the wavelength is 99.93 m. 
PFDTD uses rectangular geometry only and thus the conducting sphere is modeled 
as a collection of perfectly conducting cubes, leading to a "staircase" 
profile. Since the grid spacing is 2.6508 m, there is on the order of a 5% 
variation in the "sphere" radius. To obtain the radar cross sections, the 
near fields are integrated on the six planes located at x, y and z of k76.8736. 

For the test case with ka=4.0 and 4.5, PFDTD uses a grid spacing of 
2.3857 m to obtain better resolution. The test cases with ka=2.0 and 3.5 were 
also calculated with this smaller cell size spacing to obtain more accurate 
results on the radar cross sections. 

2. Test Case for Parallel NEC 

For the test cases with ka=1.0-3.0, parallel NEC modelled the sphere 
with a total of 80 surface patches. Figure 5.2 illustrates the patch 
modelling of 1/8 of the sphere surface. This pattern was repeated over the 
remaining portions of the sphere surface. These patches were constructed in a 
manner analogous to that used in Example 9 of Section IV of the NEC manual 
[Ref. 5-11. The code's symmetry option was NOT invoked for these test cases 
so the matrix equation to be solved was of order NT=160. For the NEC input, 
the incident wave specified above corresponds to a plane wave with 9=90 
degrees, 4=11=0 degrees. 
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Figure 5 . 1  Geometry of the test case: scattering from a perfectly 
conducting sphere. The sphere is  centered a t  the or ig in .  A 
plane wave is incident from the -x direct ion.  
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Figure 5.2 Patch model of a sphere f o r  the 80 patch model used in the 

remaining 7 sections of the sphere surface. 
. parallel NEC code. The pattern was repeated over the 
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For the test cases with ka=3.5-4.5, the sphere was modeled with 168 
surface patches in order to obtain sufficient resolutions. For kaZ5.0, 288 
patches were used and for ka=6.0 and 6.5, 360 patches were used. 
ka=3.0 was done with 80, 120, and 168. It should be noted that test cases run 
on the parallel NEC code always agreed with the sequential VAX NEC code 
results to all significant figures. The times for the runs for 80, 120, and 
168 patches can be found in Table 4.1 in Section IV. 

The case 

3. Exact Solution 

The exact solution for this test case is attributed to D. Mie. The 
solution uses spherical wave functions and boundary value techniques to find 
the terms of the resultant Mie series for the scattered field. The same 
formulation is used regardless of the composition of the sphere, e.g., its 
dielectric constant. Only the coefficients of the terms change. A detailed 
mathematical discussion of the solution can be found in Ruck, et al. [5-21 or 
Bowman, et a l .  [5-31. 

A FORTRAN code for the evaluation of the series was obtained from 
Dr. Sembiam Rengarajan, California State University, Northridge. The code was 
used to generate the scattered near fields only; far field results were not 
generated. The code was tested by comparison with near field plots in [5-31. 

The Mie series is an infinite sum and, thus, in 'practice it must be 
terminated after a finite number of terms. For a sphere with ka on the order 
of 3, the series can be truncated at ka +10 terms with an error in the near 
fields of no more than 5% 15-21. 

B. COMPARISON OF RESULTS 

1. Front Plane Comparison of Near Fields 

Results from both parallel codes and from the analytic solution for 
the magnitude and phase of the scattered field Ez in a plane in front of the 
sphere are shown in Figure 5.3. 
z=22.5319, for 29 values of y starting at y=2.6508 and incremented in steps of 
2.6508 (the grid spacing for PFDTD). The magnetic field Hy is shown in Figure 
5.4 for the same positions. Because of the polarization for the incident 
wave, these field components are much larger than the others in this plane. 
It can be seen that there is excellent agreement between the results of both 
codes and the analytic solution. The maximum difference between the parallel 
NEC code and the analytic solution for the amplitude of Ez is about 2.5% and 
the maximum difference between PFDTD and the analytic solutions is about 6%. 
Over most of the range, it can be seen that the error is generally much 
smaller. 

The comparison is made at x=76.8736, 
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2. Back Plane Comparison of Near Fields 

Results from both parallel codes and the analytic solution for the 
magnitude and phase of the scattered field Ez in a plane in back of the sphere 
are shown in Figure 5 . 5 .  The comparison is made at x=-76.8736, 2=22.5319, for 
29 values of y starting at y=2.6508 and incremented in steps of 2.6508 as in 
the front plane comparison. The magnetic field Hy is shown in Figure 5 . 6  for 
the same positions. Here, the agreement between the exact and NEC results is 
still quite good, although the percentage difference is as much as 4% for 
small y values. For this plane, the PFDTD results differ from the NEC and 
exact results by about 20%. The difference drops to under 10% in the large y 
region. The smaller y region falls in the "shadow" of the test sphere. The 
discrepancy between the PFDTD code and the exact solution is discussed in 
Section v.C. 

3. Bottom Plane Comparison of Near Fields 

Results from both codes for the magnitude and phase of the scattered 
field Ey in a plane below the sphere are shown in Figure 5.7. The comparison 
is made at x=-23.8573, z=-76.8736 for 29 values of y starting at y=1.3254 and 
incremented in steps of 2.6.508. The scattered magnetic field Hy is shown in 
Figure 5.8 for the same positions. This region is not in the shadow and, 
except for a few anomalous points, the agreement between the two codes is 
good. 
than 14% except for the first two anomalous points. 
of the Hx scattered fields differ by no more than 14% except for the first 
three points. 

The magnitude 'and phase for the scattered Ey fields differ by no more 
The magnitude and phase 

The explanation for the anomalous behavior lies in the fact that the 
absolute values for the fields at these points are smaller than the incident 
field amplitudes by about two orders of magnitude. The PFDTD code has 
difficulty in computing these small field values accurately. The anomalous 
phase values result from the method used by PFDTD to calculate the phases: At 
each time step, PFDTD has the amplitude and an approximation to the first 

back. PFDTD, then, approximates the first derivative of the amplitude f o r  the 
current time step. If a change occurred in the first derivative between the 
previous and current time step, PFDTD assumes a peak or valley has occurred in 
the amplitude. The code uses a second derivative test to distinguish between 
a peak and valley. If a peak occurs, PFDTD records the current iteration 
count. PFDTD subtracts a reference iteration number from the iteration 
number. From the known time increment dt, wavenumber k, and the speed of 
light c, PFDTD calculates a phase relative to the reference time step in 
radians. 

I 

I 
I 

derivative of the amplitude of the discrete field components one time step 

There are two results of this phase calculation. Because of the finite 
time increment dt, the phase plots have staircase profiles. If the 
amplitudes of the fields at selected test points are small compared to the 
magnitude of the incident fields, the waveform may not be sinusoidal. 
Recorded time step iterations may not be reliable for these cases. I 
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and phase of the scattered Ez f i e l d .  
behind the sphere, x=-76.8736, z=22.5319. 

The comparison here is  



n 

E 
4 
\ 

W 

3.500e-3 

3.000e-3 

2.500e-3 

2.000e-3 

1.500e-3 

1.000e-3 
0 20 40 60 80 

160 

140 

120 

100 

80 

60 
0 20 40 60 80 

Figure 5 . 6  Comparison of NEC, PFDTD, and exact resul ts  f o r  the amplitude 
and phase of the scattered Hy f i e l d .  
behind the sphere a t  the same pos i t ions  as  i n  Figure 5 . 5 .  

The comparison here i s  

5-9 



0.3 

0.2 

0.1 

0.0 

R 
Q 

I 

I 
CI NEC I 

I A  -1 40 

-.-i -1 60 -vol 
I A  

P A  

P 

0 NEC 
A FDTD 

Figure 5.7 Comparison of NEC, PFDTD, and exact results for the amplitude 
and phase of the scattered Ey field. 
below the sphere, x=-23.8573, z=-76.8736. 

The comparison here is 

5-10 



4.000e-4 

3.500e-4 

3.000e-4 

2.500e-4 

2.000e-4 

1.500e-4 

1.000e-4 

5.000e-5 

0.000e+0 

- 
A 

A 

A 0  A O D  

A D  

0 10 20 30 40 50 

-100 

Figure  5.8 Comparison of NEC, PFDTD, and exact r e s u l t s  f o r  t h e  ampli tude 
and phase of t h e  s c a t t e r e d  Hx f i e l d .  The comparison h e r e  is 
below t h e  sphere  a t  the same p o s i t i o n s  as i n  F igu re  5.5. 

5-11 



4. Comparison of Radar Cross Sections 

Radar cross sections from the two codes are compared to the exact 
The exact solution is based on a figure taken from solution in Figure 5.9. 

[5-21. The definition of the radar cross section is in Part I1 of the NEC 
manual IS-11 in the description of the subrouting RDPAT which calculates the 
far field quantities. Parallel NEC results for the test case are shown as 
dots. PFTD results for a cell size of 2.6508 m are shown as squares and 
results for a cell size of 2.3857 are shown as triangles. 

The parallel NEC results plotted in Figure 5.9 are in very good agreement 
with the exact results with the exception of the results for ka=2.5 and 4.5 
which are off by about 20%. The discrepancy at ka=2.5 is due to large 
internal fields which are excited inside the sphere in the region around a 
cavity resonance at ka=2.744, as discussed in Example 9 in Part I11 of the NEC 
manual [5-11. A different cavity resonance is the most likely cause of the 
error at ka=4.5 as well. This pitfall of the NEC approach is discussed in 
Sec. V.C. below. 

The PFDTD code results are in fairly good agreement. Considering only 
the points with the finer resolutions, the PFDTD results for ka=4 and under 
are within 20% of the exact result. The case ka=4.5 is off by 50%. At 
ka=4.5, the wavelength is 67 m, or about 3 times the grid spacing. Apparently 
this case is simply beyond the resolution of the code. This problem was the 
largest size possible to run in the 32-node Mark I11 Hypercube. More nodes 
would be needed to resolve this and higher ka cases. 

C. DISCUSSION OF RESULTS 

From the plots shown above (Section V.B.21, one can conclude that in 
general PFDTD is less accurate than NEC for scattering from a perfectly 
conducting sphere. NEC's method of moments approach is known to be very 
accurate for such steady-state scattering problems. For the problem of plane 
wave scattering from a perfectly conducting cube, Taflove (see [3-31 of 
Section 1II.A) claims to obtain near fields accurate to within +3% when 
using a unit cell of size 6 = W20. Clearly, then, FDTD should be capable 
of accurate results. 

1. Sources of Error in the NEC Code 

The NEC code is known to give erroneous answers when large internal 
fields are excited in the object modeled. For a conducting sphere, a resonant 
TM-101 cavity mode exists at ka=2.744 [5-11. However, the patch model of a 
sphere used in the test case is not a perfect sphere since NEC only utilizes 
the center and total area of the patches in the model and not their shape. 
Apparently, this results in giving significant width to the ka=2.744 cavity 
resonance. In Figure 5.10, the radar cross section in the region around,this 
resonance is plotted. NEC results for the test case (plane wave incident in 
the -x direction) are plotted as filled dots. Figure 5.9 showed only the 
results at ka=2.5 and kas3.0. Here, results at ka=2.5, 2.6, 2.7, 2.75, and 
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2.8 are plotted. The normalized radar cross section at ka=2.75 was 10.1 (off 
the graph) which is 14 times the exact value. For ka=2.6 and 2.7, the error 
was also on the order of 20%. For ka=2.8 (also 2.9 and 3.01, however, there 
is no observable error. 

The other set of radar cross section points plotted in Figure 5.10 are 
for the same test problem, but with the wave incident from the -z direction 
(open dots). (The radar cross section, of course, is now calculated from the 
backscattered radiation in the +z direction.) 
perfectly spherically symmetric, the results for these two different angles 
of incidence should be identical. However, from Figure 5.2, it can be seen 
that the patch model used does not have perfect spherical symmetry. This 
apparently causes an asymmetry in the results. For radiation incident in the 
-z direction, the internal fields are apparently excited for values of ka at 
and slightly ABOVE the resonance at ka=2.744; in the first case (-x axis) the 
errors occurred for values at and slightly BELOW the resonance. For -2 
incidence, the values at ka=2.9,3.0 and 3.1 are now on the order of 20% below 
the exact value. The value at ka=2.7 has no observable error for this case. 

If the patch model were 

The presence of large internal resonant fields can be detected by looking 
at the near fields inside the object. Such errors can be avoided by proper 
placement of wires inside the object to destroy the cavity resonances [5-11. 

2. Sources of Error in PFDTD 

There are two possible sources of error in the PFDTD results. First, the 
"staircase" approximation to the sphere results in a variation for the sphere 
radius of several percent. (For rectangular scatterers this error is zero.) 
Second, the PFDTD code has not been adequately validated due to lack of time. 
In particular, we need to check the symmetry of the results by running the 
code for plane waves incident from various directions. 

From the CPU times we also conclude that PFDTD is considerably less 
efficient than NEC in solving for the scattered fields of the sphere. This is 
simply due to the generality of the FDTD method in comparison with NEC which 
is designed specifically for steady-state analysis of perfectly conducting 
scatterers. FDTD, on the other hand, can do either a steady-state or 
transient analysis of either perfectly conducting scatterers or volumetrically 
complex scatterers (e.g., inhomogeneous dielectrics). In all cases the PFDTD 
computation times would be comparable to or less than those of the test case. 

Clearly, NEC and PFDTD are complementary codes, and, as this work 
demonstrates, the proper code must be used for a given situation if accurate 
results are to be efficiently obtained. 
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SECTION VI 

CONCLUSIONS 

I 

The basic objective of this task was to investigate the applicability of 
a parallel computing architecture to the solution of large scale 
electromagnetic scattering problems. To accomplish this objective, two 
scattering codes were implemented on JPL's parallel computer, the Mark I11 
Hypercube. One code was the widely used NEC-2 method of moments code, 
obtained from Lawrence Livermore National Laboratory as a running VAX code. 
The parallel implementation and results of this code were described in 
Section IV. The second code implemented was a finite difference time domain 
code in which Maxwell's equations were solved explicitly in three dimensions 
as an initial value problem. No suitable existing version of such an approach 
was available and considerable code development was necessary before the 
parallel implementation of the finite difference time domain (FDTD) code could 
begin. THE FDTD code development, implementation and results were discussed 
in Section 111. In Section V., the accuracy of the codes was checked by 
comparing results from both codes with each other and with exact results for 
the sponsor- selected test case, scattering from a perfectly conducting 
sphere. Very good agreement was found whenever code results were expected to 
be accurate. 

There are three quantitative measures of performance of the applicability 
of parallel architecture to large scale electromagnetic scattering problems. 
The first two relate to performance relative to a conventional mainframe, here 
chosen to be a VAX 11/750: (1) What is the increase in the SPEED relative to 
a standard mainframe? and (2) What is the increase in the SIZE of the problem 
which can be run relative to a standard mainframe? The answers to these two 
questions depend on the particular computers used for the comparisons. The 
third measure relates more generally to whether o r  not the methods of solution 
and numerical algorithms are suitable for parallel architecture: How much 
faster is a problem run on multiple processors in a parallel computer compared 
to the same problem run on only one processor? Although the answer here will 
depend on the specifics o.f the parallel computer used, it is still one useful 
measure of the applicability of parallel computing architecture to such 
problems. 

(1) Code Speed for 32 Node Mark I11 Relative to a Conventional Mainframe 

Timing comparisons between the VAX and the Mark I11 32 node for the NEC 
code were done for two different types of problems. One was a problem in 
which the object was modelled with patches (Table 4.1) and one was a problem 
in which the object was modelled with wires (Table 4.2). 
made for both because, for a fixed number of segments o r  patches, the matrix 
fill portion of the code takes much longer for wires. For the largest 
problems that could be run on the VAX, the Mark I11 32-node was 7 . 5  times 
faster f o r  the patch case and 11 times faster for the wire case. Thus a wire 
case that ran f o r  an hour on the VAX took only 5.5 minutes on the Mark I11 
Hypercube. This speedup makes it feasible for the user to run the NEC code in 
an interactive mode, rather than in a batch mode. 

Comparisons were 
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Direct timing comparisons between a VAX 11/750 and a Mark I11 Hypercube, 
using 32 active nodes, are not available for the finite difference time domain 
codes. Because the Parallel Finite Difference Time Domain (PFDTD) code has 
several enhancements, which we did not incorporate into the Generalized Finite 
Difference Time Domain (GFDTD) code, we cannot directly compare the execution 
times of these two distinct codes. The major difference in the two codes is 
the following: GFDTD uses first order correct radiation boundary conditions, 
while PFDTD uses the more computationally intensive second order correct 
radiation boundary conditions. 

However, we compare the following execution times. We compare the 
execution time per iteration for GFDTD on a VAX 11/750 and a Counterpoint 
System XIX computer. The Counterpoint computer serves as the control 
processor for the Mark I11 Hypercube. For approximately 64000 cells in the 
global lattice, the execution time per iteration on the VAX is 47.47 sec. and 
the execution time per iteration on the Counterpoint is 89.81 sec. For 
64000 cells, the execution time per iteration on the Mark I11 using 32 nodes 
is 1.70 sec. The ratio of the execution time on the VAX over the execution 
time on a Mark I11 using 32 nodes is 27.9. If GFDTD also had the enhanced 
features of PFDTD, this ratio would be larger. The reason for the larger 
ratio is the following: second order correct boundary conditions would 
increase the execution time per iteration on the VAX. 
run lasts about 1 t o  2 hours, the same job would take over 27.9 to 55.8 hours 
on the VAX. 

Since a typical PFDTD 

(2) Increase in Problem Code Size Relative to a Conventional Mainframe 

In addition to providing multiple processors for increased computing 
speed, parallel computing architecture also offers the possibility of an 
increase in available memory if each processor has its own memory as well as 
its own CPU. The VAX 11/750 has about 5 Megabytes of memory to a typical user 
whereas the Mark I11 has 4 Megabytes per processor, or  a total of 128 
Megabytes. Clearly, much larger problems can be run on the Mark I11 32 Node. 

For the NEC code, the size of the largest problem that can be run is 
essentially determined by the largest interaction matrix which can be stored 
in memory. 
number of wire segments and M is the number of patches used to model the 
object. The largest sphere case that could be run on the VAX was one with 
approximately 224 patches. On the Mark I11 32 node, the largest patch problem 
run was one with 440 patches, or an 880 X 880 interaction matrix. This is 
roughly a factor of 2 in terms of the number of patches in the modeled object 
relative to the VAX. 

The matrix is NT x NT with NT = N + 2 * M where N is the 

For GFDTD and PFDTD, the largest size problem is determined by the number 
of unit cells used to model the computation lattice. For the VAX 111750, we 
can allocate memory for about 192,000 unit cells. For the Mark I11 Hypercube 
with 32 active nodes, we can allocate memory for about 2,048,000 unit cells. 

(3) Code Speed on 32 Nodes Relative to 1 Node 

To measure the suitability of the codes to the parallel architecture of 
the hypercube, we use the speedup factor, defined as the ratio of the run time 
on n-nodes to the time on 1 nade. If there were no penalties associated with 
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parallel computing architecture, the speedup would be n. However, when a code 
is run on multiple nodes of a parallel processor, the speedup never increases 
linearly with the number of processors because there is "overhead" associated 
with running in parallel. The parallel overhead has two sources: time spent 
in communication between processors and time lost if the work loads of the 
various processors are not balanced so that some processors must sit idle 
while waiting for other processors to finish. Some algorithms are by nature 
more suited to parallel computers than others. 

The GFTDT code is an ideal candidate for parallel architecture because 
the finite difference method used is intrinsically a "local" calculation. The 
computation at each grid point utilizes information from, at most, two unit 
cells. This local calculation feature permits low parallel communication 
overhead. A l s o ,  load imbalance is not a serious problem because we can evenly 
divide the global grid among the nodes. The suitability of this code for 
parallel computing is reflected in the high speedup factors. For the largest 
problem that could be run on 1 node, the speedup factor in going from 1 to 
32 nodes was 25.4 (or 79.3% efficient). It is important to note that because 
the problem size remains the same, the number of cells in each processor of a 
32 node configuration is reduced by a factor of 32. The larger hypercube 
configurations do not work to full capacity. In other words, the ratio of 
computation to communication times i.s reduced. For a larger problem, where we 
run the same size problem on 32 nodes that saturates an 8 node configuration, 
the number of cells in each processor is reduced by a factor of 4. The 
speedup factor in going from 8 to 32 nodes is 3.7 (or 92.7% efficient). 

For the NEC code, speedups were given for the two computationally 
intensive parts of the code separately, the matrix fill and the Householder 
transformation of the matrix (factorization time). The speedup in total times 
was also given. The fill of the interaction matrix is also ideally suited to 
parallel architecture because the various rows of the matrix can be filled 
independently of each other, leading to a very low comunication overhead. 
However, when the number of rows is not much larger than the number of 
processors, load imbalance problems do occur. Nevertheless, the speedups 
found for the fill were excellent. For the largest problem that could fit in 
one node ( 2 4 0  wire segments), the speedup factor for 32 nodes relative to 1 
node was 26.8. 

1 
I 
I 

I 

Because by nature matrix operations generally need information from many 
or all of the other matrix elements, matrix computations typically demonstrate 
less speedup than other algorithms, where the data internode communication 
requirements are low or confined to neighboring processors. For this reason 
concurrent implementation of matrix algorithms requires great care. Data must 
be distributed so that the amount of comunication is minimized. For parallel 
NEC, the internode data dependency is reflected in the relatively lower 
speedups for the factorization part compared to the fill. As shown in Figures 
4.21 and 4.24, appreciable speedups of 23 to 24 times have been obtained 
particularly for larger problems. 

This task has demonstrated the applicability of a parallel architecture 
to the solution of large electromagnetic scattering problems. The two 
techniques used, finite difference and method of moments, have provided 
insight into the comparative speedups which can be attained for several 
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algorithms. It also has demonstrated the flexibility of the hypercube 
architecture for different applications. The 32-node Mark I11 Hypercube has 
been used to concurrently solve electromagnetic scattering problems too large 
and/or too time consuming to be done on a sequential computer such as the 
VAX. 
allows us to extrapolate the performance of even larger hypercube 
configurations on larger problems. 

The ability to measure this performance for variable size hypercubes 
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