39,519 research outputs found

    In situ analysis for intelligent control

    Get PDF
    We report a pilot study on in situ analysis of backscatter data for intelligent control of a scientific instrument on an Autonomous Underwater Vehicle (AUV) carried out at the Monterey Bay Aquarium Research Institute (MBARI). The objective of the study is to investigate techniques which use machine intelligence to enable event-response scenarios. Specifically we analyse a set of techniques for automated sample acquisition in the water-column using an electro-mechanical "Gulper", designed at MBARI. This is a syringe-like sampling device, carried onboard an AUV. The techniques we use in this study are clustering algorithms, intended to identify the important distinguishing characteristics of bodies of points within a data sample. We demonstrate that the complementary features of two clustering approaches can offer robust identification of interesting features in the water-column, which, in turn, can support automatic event-response control in the use of the Gulper

    A study of aseptic maintenance by pressurization

    Get PDF
    Pressure differential for spacecraft sterilization against microbe contaminatio

    Mechanical fluidity of fully suspended biological cells

    Get PDF
    Mechanical characteristics of single biological cells are used to identify and possibly leverage interesting differences among cells or cell populations. Fluidity---hysteresivity normalized to the extremes of an elastic solid or a viscous liquid---can be extracted from, and compared among, multiple rheological measurements of cells: creep compliance vs. time, complex modulus vs. frequency, and phase lag vs. frequency. With multiple strategies available for acquisition of this nondimensional property, fluidity may serve as a useful and robust parameter for distinguishing cell populations, and for understanding the physical origins of deformability in soft matter. Here, for three disparate eukaryotic cell types deformed in the suspended state via optical stretching, we examine the dependence of fluidity on chemical and environmental influences around a time scale of 1 s. We find that fluidity estimates are consistent in the time and the frequency domains under a structural damping (power-law or fractional derivative)model, but not under an equivalent-complexity lumpedcomponent (spring-dashpot) model; the latter predicts spurious time constants. Although fluidity is suppressed by chemical crosslinking, we find that adenosine triphosphate (ATP) depletion in the cell does not measurably alter the parameter, and thus conclude that active ATP-driven events are not a crucial enabler of fluidity during linear viscoelastic deformation of a suspended cell. Finally, by using the capacity of optical stretching to produce near-instantaneous increases in cell temperature, we establish that fluidity increases with temperature---now measured in a fully suspended, sortable cell without the complicating factor of cell-substratum adhesion

    Quantum speed limit for relativistic spin-0 and spin-1 bosons on commutative and noncommutative planes

    Get PDF
    Quantum speed limits of relativistic charged spin-0 and spin-1 bosons in the background of a homogeneous magnetic field are studied on both commutative and oncommutative planes. We show that, on the commutative plane, the average speeds of wave packets along the radial direction during the interval in which a quantum state evolving from an initial state to the orthogonal final one can not exceed the speed of light, regardless of the intensities of the magnetic field. However, due to the noncommutativity, the average speeds of the wave packets on noncommutative plane will exceed the speed of light in vacuum provided the intensity of the magnetic field is strong enough. It is a clear signature of violating Lorentz invariance in quantum mechanics region.Comment: 8 pages, no figures. arXiv admin note: text overlap with arXiv:1702.0316

    Numerical solution of the Navier-Stokes equations for arbitrary two-dimensional multi-element airfoils

    Get PDF
    The development of a numerical simulation of time dependent, turbulent, compressible flow about two dimensional multi-element airfoils of arbitrary shape is described. The basis of this simulation is a technique of automatic numerical generation of coordinate systems fitted to the multiple bodies regardless of their number or shape. Procedures developed whereby the coordinate lines are automatically concentrated in the boundary layer at any Reynolds number are discussed. The compressible turbulent solution involves an algebraic eddy viscosity turbulence model. The laminar version was run for transonic flow at free stream Mach numbers up to 0.9

    Single and Many Particle Correlation Functions and Uniform Phase Bases for Strongly Correlated Systems

    Get PDF
    The need for suitable many or infinite fermion correlation functions to describe some low dimensional strongly correlated systems is discussed. This is linked to the need for a correlated basis, in which the ground state may be postive definite, and in which single particle correlations may suffice. A particular trial basis is proposed, and applied to a certain quasi-1D model. The model is a strip of the 2D square lattice wrapped around a cylinder, and is related to the ladder geometries, but with periodic instead of open boundary conditions along the edges. Analysis involves a novel mean-field approach and exact diagonalisation. The model has a paramagnetic region and a Nagaoka ferromagnetic region. The proposed basis is well suited to the model, and single particle correlations in it have power law decay for the paramagnet, where the charge motion is qualitatively hard core bosonic. The mean field also leads to a BCS-type model with single particle long range order.Comment: 23 pages, in plain tex, 12 Postscript figures included. Accepted for publication in J.Physics : Condensed Matte

    Self-consistent relativistic quasiparticle random-phase approximation and its applications to charge-exchange excitations and Ī²\beta-decay half-lives

    Get PDF
    The self-consistent quasiparticle random-phase approximation (QRPA) approach is formulated in the canonical single-nucleon basis of the relativistic Hatree-Fock-Bogoliubov (RHFB) theory. This approach is applied to study the isobaric analog states (IAS) and Gamov-Teller resonances (GTR) by taking Sn isotopes as examples. It is found that self-consistent treatment of the particle-particle residual interaction is essential to concentrate the IAS in a single peak for open-shell nuclei and the Coulomb exchange term is very important to predict the IAS energies. For the GTR, the isovector pairing can increase the calculated GTR energy, while the isoscalar pairing has an important influence on the low-lying tail of the GT transition. Furthermore, the QRPA approach is employed to predict nuclear Ī²\beta-decay half-lives. With an isospin-dependent pairing interaction in the isoscalar channel, the RHFB+QRPA approach almost completely reproduces the experimental Ī²\beta-decay half-lives for nuclei up to the Sn isotopes with half-lives smaller than one second. Large discrepancies are found for the Ni, Zn, and Ge isotopes with neutron number smaller than 5050, as well as the Sn isotopes with neutron number smaller than 8282. The potential reasons for these discrepancies are discussed in detail.Comment: 34 pages, 14 figure
    • ā€¦
    corecore