8,220 research outputs found

    Development of a general purpose airborne simulator

    Get PDF
    Variable stability system development for General Purpose Airborne Simulator /GPAS

    Isoprene photooxidation : new insights into the production of acids and organic nitrates

    Get PDF
    We describe a nearly explicit chemical mechanism for isoprene photooxidation guided by chamber studies that include time-resolved observation of an extensive suite of volatile compounds. We provide new constraints on the chemistry of the poorly-understood isoprene δ-hydroxy channels, which account for more than one third of the total isoprene carbon flux and a larger fraction of the nitrate yields. We show that the cis branch dominates the chemistry of the δ-hydroxy channel with less than 5% of the carbon following the trans branch. The modelled yield of isoprene nitrates is 12±3% with a large difference between the δ and β branches. The oxidation of these nitrates releases about 50% of the NOx. Methacrolein nitrates (modelled yield ≃15±3% from methacrolein) and methylvinylketone nitrates (modelled yield ≃11±3% yield from methylvinylketone) are also observed. Propanone nitrate, produced with a yield of 1% from isoprene, appears to be the longest-lived nitrate formed in the total oxidation of isoprene. We find a large molar yield of formic acid and suggest a novel mechanism leading to its formation from the organic nitrates. Finally, the most important features of this mechanism are summarized in a condensed scheme appropriate for use in global chemical transport models

    Multi-particle-collision dynamics: Flow around a circular and a square cylinder

    Full text link
    A particle-based model for mesoscopic fluid dynamics is used to simulate steady and unsteady flows around a circular and a square cylinder in a two-dimensional channel for a range of Reynolds number between 10 and 130. Numerical results for the recirculation length, the drag coefficient, and the Strouhal number are reported and compared with previous experimental measurements and computational fluid dynamics data. The good agreement demonstrates the potential of this method for the investigation of complex flows.Comment: 6 pages, separated figures in .jpg format, to be published in Europhysics Letter

    Infinite Momentum Frame Calculation of Semileptonic Heavy \Lambda_b\to\Lambda_c Transitions Including HQET Improvements

    Full text link
    We calculate the transition form factors that occur in heavy Λ\Lambda-type baryon semileptonic decays as e.g. in Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} . We use Bauer-Stech-Wirbel type infinite momentum frame wave functions for the heavy Λ\Lambda-type baryons which we assume to consist of a heavy quark and a light spin-isospin zero diquark system. The form factors at q2=0 q^{2} = 0 are calculated from the overlap integrals of the initial and final Λ\Lambda-type baryon states. To leading order in the heavy mass scale the structure of the form factors agrees with the HQET predictions including the normalization at zero recoil. The leading order ω\omega-dependence of the form factors is extracted by scaling arguments. By comparing the model form factors with the HQET predictions at O(1/mQ){\cal O}(1/m_{Q}) we obtain a consistent set of model form factors up to O(1/mQ){\cal O}(1/m_{Q}). With our preferred choice of parameter values we find that the contribution of the non-leading form factor is practically negligible. We use our form factor predictions to compute rates, spectra and various asymmetry parameters for the semi-leptonic decay Λb→Λc++l−+νˉl\Lambda_{b} \to \Lambda_{c}^{+} + l^{-} + \bar{\nu}_{l} .Comment: 24 pages, LaTeX, 6 figures are included in PostScript format. Final version of paper to appear in Phys.Rev.

    Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds

    Get PDF
    A series of experiments has been conducted in the Caltech indoor smog chamber facility to investigate the water uptake properties of aerosol formed by oxidation of various organic precursors. Secondary organic aerosol (SOA) from simple and substituted cycloalkenes (C5-C8) is produced in dark ozonolysis experiments in a dry chamber (RH~5%). Biogenic SOA from monoterpenes, sesquiterpenes, and oxygenated terpenes is formed by photooxidation in a humid chamber (~50% RH). Using the hygroscopicity tandem differential mobility analyzer (HTDMA), we measure the diameter-based hygroscopic growth factor (GF) of the SOA as a function of time and relative humidity. All SOA studied is found to be slightly hygroscopic, with smaller water uptake than that of typical inorganic aerosol substances. The aerosol water uptake increases with time early in the experiments for the cycloalkene SOA, but decreases with time for the biogenic SOA. This behavior could indicate competing effects between the formation of more highly oxidized polar compounds (more hygroscopic), and formation of longer-chained oligomers (less hygroscopic). All SOA also exhibit a smooth water uptake with RH with no deliquescence or efflorescence. The water uptake curves are found to be fitted well with an empirical three-parameter functional form. The measured pure organic GF values at 85% RH are between 1.09–1.16 for SOA from ozonolysis of cycloalkenes, 1.01–1.04 for sesquiterpene photooxidation SOA, and 1.06–1.11 for the monoterpene and oxygenated terpene SOA. The GF of pure SOA (GForg) in experiments in which inorganic seed aerosol is used is determined by assuming volume-weighted water uptake (Zdanovskii-Stokes-Robinson or ''ZSR'' approach) and using the size-resolved organic mass fraction measured by the Aerodyne Aerosol Mass Spectrometer. Knowing the water content associated with the inorganic fraction yields GForg values. However, for each precursor, the GForg values computed from different HTDMA-classified diameters agree with each other to varying degrees. Lack of complete agreement may be a result of the non-idealities of the solutions that are not captured by the ZSR method. Comparing growth factors from different precursors, we find that GForg is inversely proportional to the precursor molecular weight and SOA yield, which is likely a result of the fact that higher-molecular weight precursors tend to produce larger and less hygroscopic oxidation products

    Exclusive Photoproduction of Large Momentum-Transfer K and K* Mesons

    Full text link
    The reactions gamma p -> K+ Lambda and gamma p -> K* Lambda are analyzed within perturbative QCD, allowing for diquarks as quasi-elementary constituents of baryons. The diquark-model parameters and the quark-diquark distribution amplitudes of proton and Lambda are taken from previous investigations of electromagnetic baryon form factors and Compton-scattering off protons. Unpolarized differential cross sections and polarization observables are computed for different choices of the K and K* distribution amplitudes. The asymptotic form of the K distribution amplitude (proportional to x1 x2) is found to provide a satisfactory description of the K photoproduction data.Comment: 32 pages, 7 figures available as tared, compressed and uuencoded PS-file

    Scaling of Selfavoiding Tethered Membranes: 2-Loop Renormalization Group Results

    Full text link
    The scaling properties of selfavoiding polymerized membranes are studied using renormalization group methods. The scaling exponent \nu is calculated for the first time at two loop order. \nu is found to agree with the Gaussian variational estimate for large space dimension d and to be close to the Flory estimate for d=3.Comment: 4 pages, RevTeX + 20 .eps file

    Hard exclusive photoproduction of Φ\Phi mesons

    Full text link
    We calculate the differential cross section and single-polarization observables for the reaction γp→Φp\gamma p \to \Phi p within perturbative QCD, treating the proton as a quark-diquark system. The phenomenological couplings of gauge bosons to (spatially extended) diquarks and the quark-diquark distribution amplitude of the proton are adopted from previous investigations of baryon form factors and two-photon processes. Going beyond leading order, we take into account hadron-mass effects by means of a systematic expansion in the small parameter (hadron mass/ photon energy). With the Φ\Phi-meson distribution amplitude taken from the literature our predictions for the differential cross section at | t | \agt 4 \text{GeV}^2 seem to provide a reasonable extrapolation of the low-t data and are also comparable in magnitude with the results of a two-gluon exchange model in which the gluons are considered as a remnant of the pomeron. For momentum transfers of a few GeV hadron-mass effects appear still to be sizeable.Comment: 37 pages, 7 figures, uses RevTeX styl
    • …
    corecore