10,923 research outputs found

    Addendum to "Coherent Lagrangian vortices: The black holes of turbulence"

    Full text link
    In Haller and Beron-Vera (2013) we developed a variational principle for the detection of coherent Lagrangian vortex boundaries. The solutions of this variational principle turn out to be closed null-geodesics of the Lorentzian metric associated with a generalized Green-Lagrange strain tensor family. This metric interpretation implies a mathematical analogy between coherent Lagrangian vortex boundaries and photon spheres in general relativity. Here we give an improved discussion on this analogy.Comment: Revised 27 June 201

    Coherent Lagrangian vortices: The black holes of turbulence

    Full text link
    We introduce a simple variational principle for coherent material vortices in two-dimensional turbulence. Vortex boundaries are sought as closed stationary curves of the averaged Lagrangian strain. Solutions to this problem turn out to be mathematically equivalent to photon spheres around black holes in cosmology. The fluidic photon spheres satisfy explicit differential equations whose outermost limit cycles are optimal Lagrangian vortex boundaries. As an application, we uncover super-coherent material eddies in the South Atlantic, which yield specific Lagrangian transport estimates for Agulhas rings.Comment: To appear in JFM Rapid

    Anharmonic Self-Energy of Phonons: Ab Initio Calculations and Neutron Spin Echo Measurements

    Full text link
    We have calculated (ab initio) and measured (by spin-echo techniques) the anharmonic self-energy of phonons at the X-point of the Brillouin zone for isotopically pure germanium. The real part agrees with former, less accurate, high temperature data obtained by inelastic neutron scattering on natural germanium. For the imaginary part our results provide evidence that transverse acoustic phonons at the X-point are very long lived at low temperatures, i.e. their probability of decay approaches zero, as a consequence of an unusual decay mechanism allowed by energy conservation.Comment: 8 pages, 2 figures, pdf fil

    Dissipative inertial transport patterns near coherent Lagrangian eddies in the ocean

    Full text link
    Recent developments in dynamical systems theory have revealed long-lived and coherent Lagrangian (i.e., material) eddies in incompressible, satellite-derived surface ocean velocity fields. Paradoxically, observed drifting buoys and floating matter tend to create dissipative-looking patterns near oceanic eddies, which appear to be inconsistent with the conservative fluid particle patterns created by coherent Lagrangian eddies. Here we show that inclusion of inertial effects (i.e., those produced by the buoyancy and size finiteness of an object) in a rotating two-dimensional incompressible flow context resolves this paradox. Specifically, we obtain that anticyclonic coherent Lagrangian eddies attract (repel) negatively (positively) buoyant finite-size particles, while cyclonic coherent Lagrangian eddies attract (repel) positively (negatively) buoyant finite-size particles. We show how these results explain dissipative-looking satellite-tracked surface drifter and subsurface float trajectories, as well as satellite-derived \emph{Sargassum} distributions.Comment: Submitted to \emph{Chaos} Focus Issue on Objective detection of Lagrangian Coherent Structures. Revised 23-Feb-1

    Precision Measurements of Stretching and Compression in Fluid Mixing

    Full text link
    The mixing of an impurity into a flowing fluid is an important process in many areas of science, including geophysical processes, chemical reactors, and microfluidic devices. In some cases, for example periodic flows, the concepts of nonlinear dynamics provide a deep theoretical basis for understanding mixing. Unfortunately, the building blocks of this theory, i.e. the fixed points and invariant manifolds of the associated Poincare map, have remained inaccessible to direct experimental study, thus limiting the insight that could be obtained. Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow producing chaotic mixing, we directly measure the time-dependent stretching and compression fields. These quantities, previously available only numerically, attain local maxima along lines coinciding with the stable and unstable manifolds, thus revealing the dynamical structures that control mixing. Contours or level sets of a passive impurity field are found to be aligned parallel to the lines of large compression (unstable manifolds) at each instant. This connection appears to persist as the onset of turbulence is approached.Comment: 5 pages, 5 figure

    Naive Bayesian Learning in 2 x 2 Matrix Games

    Get PDF

    Coherent Lagrangian vortices: the black holes of turbulence

    Get PDF
    We introduce a simple variational principle for coherent material vortices in two-dimensional turbulence. Vortex boundaries are sought as closed stationary curves of the averaged Lagrangian strain. Solutions to this problem turn out to be mathematically equivalent to photon spheres around black holes in cosmology. The fluidic photon spheres satisfy explicit differential equations whose outermost limit cycles are optimal Lagrangian vortex boundaries. As an application, we uncover super-coherent material eddies in the South Atlantic, which yield specific Lagrangian transport estimates for Agulhas ring

    Persistent Transport Barrier on the West Florida Shelf

    Get PDF
    Analysis of drifter trajectories in the Gulf of Mexico has revealed the existence of a region on the southern portion of the West Florida Shelf (WFS) that is not visited by drifters that are released outside of the region. This so-called ``forbidden zone'' (FZ) suggests the existence of a persistent cross-shelf transport barrier on the southern portion of the WFS. In this letter a year-long record of surface currents produced by a Hybrid-Coordinate Ocean Model simulation of the WFS is used to identify Lagrangian coherent structures (LCSs), which reveal the presence of a robust and persistent cross-shelf transport barrier in approximately the same location as the boundary of the FZ. The location of the cross-shelf transport barrier undergoes a seasonal oscillation, being closer to the coast in the summer than in the winter. A month-long record of surface currents inferred from high-frequency (HF) radar measurements in a roughly 60 km ×\times 80 km region on the WFS off Tampa Bay is also used to identify LCSs, which reveal the presence of robust transient transport barriers. While the HF-radar-derived transport barriers cannot be unambiguously linked to the boundary of the FZ, this analysis does demonstrate the feasibility of monitoring transport barriers on the WFS using a HF-radar-based measurement system. The implications of a persistent cross-shelf transport barrier on the WFS for the development of harmful algal blooms on the shoreward side of the barrier are considered.Comment: Submitted to Geophysical Research Letter

    Nonholonomic systems with symmetry allowing a conformally symplectic reduction

    Full text link
    Non-holonomic mechanical systems can be described by a degenerate almost-Poisson structure (dropping the Jacobi identity) in the constrained space. If enough symmetries transversal to the constraints are present, the system reduces to a nondegenerate almost-Poisson structure on a ``compressed'' space. Here we show, in the simplest non-holonomic systems, that in favorable circumnstances the compressed system is conformally symplectic, although the ``non-compressed'' constrained system never admits a Jacobi structure (in the sense of Marle et al.).Comment: 8 pages. A slight edition of the version to appear in Proceedings of HAMSYS 200

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed
    corecore