1,069 research outputs found
Comparative Notes on the Biology and Development of \u3ci\u3eEpeolus compactus\u3c/i\u3e Cresson., a Cleptoparasite of \u3ci\u3eColletes kincaidii\u3c/i\u3e Cockerell (Hymenoptera: Anthophoridae, Colletidae)
The biology of the nomadine bee, Epeolus compactus Cresson, is described based on composite notes taken from field, laboratory, and greenhouse studies of the host bee, Colletes kincaidii Cockerell. Details of Epeolus egg deposition are described and compared with other known noma dine bees. We document the release of a glandular secretion during egg deposition by E. compactus which dissolves the polyester host cell lining on contact. Late embryogenesis and hatching of Epeolus are described and adaptive features are discussed. The cleptoparasitic habits of the first instar are outlined, and anatomical differences expressed by various ins tars are compared. Methods used by Epeolus in parasitizing host nests excavated by the nesting Colletes female, or in host nests constructed in existing burrows, are reported. Possible reasons why rates of parasitism differ between kinds of nest architectures constructed by the host bee are discussed in some detail. Potentially useful biosystematic characters of immature stages of Epeolus are compared with those of other known nomadine bees
On the periodic motions of simple hopping robots
Discrete dynamical systems theory is applied to the analysis of simplified hopping robot models. A one-dimensional vertical hopping model that captures both the vertical hopping dynamics and nonlinear control algorithm is reviewed. A more complicated two-dimensional model that includes both forward and vertical hopping dynamics and a foot placement algorithm is presented. These systems are analyzed using a Poincare return map and hopping behavior is investigated by constructing the return map bifurcation diagrams with respect to system parameters. The diagrams show period doubling leading to chaotic behavior. Using the vertical model results as a guide, dynamic behaviour of the planar hopping system is interpreted
Hurricane impacts on the Caribbean coastal/marine environment : using scientific assessment to plan for the future
The passage of Hurricane Hugo through the eastern Caribbean provided a unique opportunity for multidisciplinary study of (1) the effects of severe storms on tropical coastal and marine ecosystems, and (2) the physical and biological responses of those
ecosystems to intense storm-induced changes. In addition to its direct value as basic science, this study can be used to facilitate
development of improved coastal and marine resource management capabilities.Funding was provided by the Andrew W. Mellon Foundation to the Coastal Research Center of
the Woods Hole Oceanographic Institution (WHOI) and the NOAA National Sea Grant College
Program Offce, Department of Commerce, under Grant No. NA86-AA-D-90
On the periodic motions of simple hopping robots
Discrete dynamical systems theory is applied to the analysis of simplified hopping robot models. A one-dimensional vertical hopping model that captures both the vertical hopping dynamics and nonlinear control algorithm is reviewed. A more complicated two-dimensional model that includes both forward and vertical hopping dynamics and a foot placement algorithm is presented. These systems are analyzed using a Poincare return map and hopping behavior is investigated by constructing the return map bifurcation diagrams with respect to system parameters. The diagrams show period doubling leading to chaotic behavior. Using the vertical model results as a guide, dynamic behaviour of the planar hopping system is interpreted
An Approach to Evaluation of the Effect of Bioremediation on Biological Activity of Environmental Contaminants: Dechlorination of Polychlorinated Biphenyls
The effectiveness of bioremediation efforts is assessed traditionally from the loss of the chemical of interest. In some cases, analytical techniques are coupled with evaluation of toxicity to organisms representative of those found in the affected environment or surrogate organisms. Little is known, however, about the effect of remediation of environmental chemicals on potential toxicity to mammalian organisms. We discuss both an approach that employs mammalian cell system bioassays and the criteria for selection of the assays. This approach has been used to evaluate the biological response to mixtures of polychlorinated biphenyls (PCBs) before and after remediation by reductive dechlorination. The dechlorination process used results in accumulation of congeners substituted in only the ortho and para positions and containing fewer chlorines than the starting mixtures. Evaluation of the dechlorinated mixture reveals a loss of biological activity that could be ascribed to coplanar PCBs not containing chlorine in the ortho positions. Conversely, biological activity associated with ortho-substituted PCB congeners is unaffected or increased by remediation. Thus, the results of the bioassays are consistent with the remediation-induced change in the profile of PCB congeners and the known mechanisms of action of PCBs. The results emphasize a need for evaluation of the products of remediation for biological activity in mammalian systems. Furthermore, the approach outlined demonstrates the potential to assess the impact of remediation on a range of biological activities in mammalian cells and thus to estimate positive and negative effects of remediation strategies on toxicity. Future needs in this area of research include assays to evaluate biological effects under conditions of exposure that mimic those found in the environment and models to extrapolate effects to assess risk to people and wildlife
High resolution infrared absorption spectra, crystal field, and relaxation processes in CsCdBr_3:Pr^3+
High resolution low-temperature absorption spectra of 0.2% Pr^3+ doped
CsCdBr_3 were measured in the spectral region 2000--7000 cm-1. Positions and
widths of the crystal field levels within the 3H5, 3H4, 3F2, and 3F3 multiplets
of the Pr^3+ main center have been determined. Hyperfine structure of several
spectral lines has been found. Crystal field calculations were carried out in
the framework of the semiphenomenological exchange charge model (ECM).
Parameters of the ECM were determined by fitting to the measured total
splittings of the 3H4 and 3H6 multiplets and to the observed in this work
hyperfine splittings of the crystal field levels. One- and two-phonon
relaxation rates were calculated using the phonon Green's functions of the
perfect (CsCdBr_3) and locally perturbed (impurity dimer centers in
CsCdBr_3:Pr^3+) crystal lattice. Comparison with the measured linewidths
confirmed an essential redistribution of the phonon density of states in
CsCdBr_3 crystals doped with rare-earth ions.Comment: 16 pages, 5 tables, 3 figure
Nanomechanical Contribution of Collagen and von Willebrand Factor A in Marine Underwater Adhesion and Its Implication for Collagen Manipulation
Recent works on mussel adhesion have identified a load bearing matrix protein (PTMP1) containing von Willebrand factor (vWF) with collagen binding capability that contributes to the mussel holdfast by manipulating mussel collagens. Using a surface forces apparatus, we investigate for the first time, the nanomechanical properties of vWF-collagen interaction using homologous proteins of mussel byssus, PTMP1 and preCollagens (preCols), as collagen. Mimicking conditions similar to mussel byssus secretion (pH < 5.0) and seawater condition (pH 8.0), PTMP1 and preCol interact weakly in the "positioning" phase based on vWF-collagen binding and strengthen in "locked" phase due to the combined effects of electrostatic attraction, metal binding, and mechanical shearing. The progressive enhancement of binding between PTMP1 with porcine collagen under the aforementioned conditions is also observed. The binding mechanisms of PTMP1-preCols provide insights into the molecular interaction of the mammalian collagen system and the development of an artificial extracellular matrix based on collagens.1142sciescopu
A new P-wave tomographic model (cap22) for North America: implications for the subduction and cratonic metasomatic modification history of western Canada and Alaska
Our understanding of the present-day state and evolution of the Canadian and Alaskan mantle is hindered by a lack of absolute P-wavespeed constraints that provide complementary sensitivity to composition in conjunction with existing S-wavespeed models. Consequently, cratonic modification, orogenic history of western North America and complexities within the Alaskan Proto-Pacific subduction system remain enigmatic. One challenge concerns the difficulties in extracting absolute arrival-time measurements from often-noisy data recorded by temporary seismograph networks required to fill gaps in continental and global databases. Using the Absolute Arrival-time Recovery Method (AARM), we extract >180,000 new absolute arrival-time residuals from seismograph stations across Canada and Alaska and combine these data with USArray and global arrival-time data from the contiguous US and Alaska. We develop a new absolute P-wavespeed tomographic model, CAP22, spanning North America that significantly improves resolution in Canada and Alaska over previous models. Slow wavespeeds below the Canadian Cordillera sharply abut fast wavespeeds of the continental interior at the Rocky Mountain Trench in southwest Canada. Slow wavespeeds below the Mackenzie Mountains continue farther inland in northwest Canada, indicating Proterozoic-Archean metasomatism of the Slave craton. Inherited tectonic lineaments colocated with this north-south wavespeed boundary suggest that both the crust and mantle may control Cordilleran orogenic processes. In Alaska, fast upper mantle wavespeeds below the Wrangell Volcanic Field favor a conventional subduction related mechanism for volcanism. Finally, seismic evidence for the subducted Kula and Yukon slabs indicate tectonic reconstructions of western North America may require revision
Lewis X antigen mediates adhesion of human breast carcinoma cells to activated endothelium. Possible involvement of the endothelial scavenger receptor C-Type lectin
Lewis x (Lex, CD15), also known as SSEA-1 (stage specific embryonic antigen-1), is a trisaccharide with the structure Galβ(1–4)Fucα(1–3)GlcNAc, which is expressed on glycoconjugates in human polymorphonuclear granulocytes and various tumors such as colon and breast carcinoma. We have investigated the role of Lex in the adhesion of MCF-7 human breast cancer cells and PMN to human umbilical endothelial cells (HUVEC) and the effects of two different anti-Lex mAbs (FC-2.15 and MCS-1) on this adhesion. We also analyzed the cytolysis of Lex+-cells induced by anti-Lex mAbs and complement when cells were adhered to the endothelium, and the effect of these antibodies on HUVEC. The results indicate that MCF-7 cells can bind to HUVEC, and that MCS-1 but not FC-2.15 mAb inhibit this interaction. Both mAbs can efficiently lyse MCF-7 cells bound to HUVEC in the presence of complement without damaging endothelial cells. We also found a Lex-dependent PMN interaction with HUVEC. Although both anti-Lex mAbs lysed PMN in suspension and adhered to HUVEC, PMN aggregation was only induced by mAb FC-2.15. Blotting studies revealed that the endothelial scavenger receptor C-type lectin (SRCL), which binds Lex-trisaccharide, interacts with specific glycoproteins of Mr␣∼␣28 kD and 10 kD from MCF-7 cells. The interaction between Lex+-cancer cells and vascular endothelium is a potential target for cancer treatment.Fil: Elola, Maria Teresa. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Capurro, Mariana Isabel. University of Toronto; CanadáFil: Barrio, Maria Marcela. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; ArgentinaFil: Coombs, Peter J.. Imperial College London; Reino UnidoFil: Taylor, Maureen E.. Imperial College London; Reino UnidoFil: Drickamer, Kurt. Imperial College London; Reino UnidoFil: Mordoh, Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fundación para la Investigación, Docencia y Prevención del Cáncer; Argentin
- …