676 research outputs found

    The impact of face-to-face street fundraising on organizational reputation

    Get PDF
    Although many stakeholders perceive face-to-face street fundraising as unpleasant, nonprofit managers encourage it as a way to attract donors. To understand the long-term effects of this fundraising method, we used a mixed-methods experimental design to investigate how face-to-face street fundraising affects organizational reputation and stakeholder support intentions in comparison with letter fundraising. The findings reveal that face-to-face street fundraising has a significant negative influence on the stakeholders' perceptions of an organization. Further, qualitative datashow that the negative perception originates primarily from perceived pressure, distrust, and obtrusion, which are triggered by face-to-face street fundraising. Our studythus reveals long-term reputational consequences that nonprofit organizations should consider before deciding on fundraising methods

    The Effects of Sound Cue Characteristics on Overcoming Front/Back Localization Errors in a 3-D Auditory Display

    Get PDF
    The purpose of this study was to investigate the performance effects of adding an additional sound cue characteristic to a 3-D auditory display sound stimulus to increase localization accuracy. Previous literature has provided evidence that localization accuracy for direct front and direct back regions is significantly worse than that of locations in the periphery for virtual 3-D auditory stimuli. In the study conducted, a highpass filter addition or a lowpass filter addition was compared to a normal condition for both the front and back locations. Results of the study showed that the best localization performance for the front location occurred with the normal sound stimulus, and the best localization for the back occurred with the lowpass filter addition. The increased localization accuracy for lowpass sound stimuli representing the back followed the hypothesis of the experimenter as well as the theory of how humans best localize sound. However, the hypothesis for the front location was not supported, nor followed the theory of how humans best localize sound (higher frequencies from the front). A possible explanation for these results was that there may be an optimal frequency range for localizing front sound stimuli, or the presence of an asymmetrical filtering distribution affected the high-pass and low-pass characteristics

    Heavy Quark Fluorescence

    Get PDF
    Heavy hadrons containing heavy quarks (for example, Upsilon-mesons) feature a scale separation between the heavy quark mass (about 4.5 GeV for the b-quark) and the QCD scale (about 0.3 GeV}) that controls effective masses of lighter constituents. Therefore, as in ordinary molecules, the de-excitation of the lighter, faster degrees of freedom leaves the velocity distribution of the heavy quarks unchanged, populating the available decay channels in qualitatively predictable ways. Automatically an application of the Franck-Condon principle of molecular physics explains several puzzling results of Upsilon(5S) decays as measured by the Belle collaboration, such as the high rate of Bs*-anti Bs* versus Bs*-anti Bs production, the strength of three-body B-anti B + pion decays, or the dip in B momentum shown in these decays. We argue that the data is showing the first Sturm-Liouville zero of the Upsilon(5S) quantum mechanical squared wavefunction, and providing evidence for a largely b-anti b composition of this meson.Comment: 4 pages, 4 figures, Figure 2 updated and some typos corrected. To be published in Physical Review Letter

    Improved Semileptonic Form Factor Calculations in Lattice QCD

    Full text link
    We investigate the computational efficiency of two stochastic based alternatives to the Sequential Propagator Method used in Lattice QCD calculations of heavy-light semileptonic form factors. In the first method, we replace the sequential propagator, which couples the calculation of two of the three propagators required for the calculation, with a stochastic propagator so that the calculations of all three propagators are independent. This method is more flexible than the Sequential Propagator Method but introduces stochastic noise. We study the noise to determine when this method becomes competitive with the Sequential Propagator Method, and find that for any practical calculation it is competitive with or superior to the Sequential Propagator Method. We also examine a second stochastic method, the so-called ``one-end trick", concluding it is relatively inefficient in this context. The investigation is carried out on two gauge field ensembles, using the non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2 mass-degenerate sea quarks. The two ensembles have similar lattice spacings but different sea quark masses. We use the first stochastic method to extract O(a){\mathcal O}(a)-improved, matched lattice results for the semileptonic form factors on the ensemble with lighter sea quarks, extracting f_+(0)

    Herpes Simplex Virus Induces Intracellular Redistribution of E2F4 and Accumulation of E2F Pocket Protein Complexes

    Get PDF
    AbstractAccumulation of E2F-p107 and E2F-pRB DNA binding complexes occurred after herpes simplex virus infection of U2-OS cells. Accumulation of E2F-p107 also occurred by 4 h p.i. in C33 cells. This corresponded to a time when host DNA synthesis was reduced by 50%, and lagged by ≥1 h, the onset of viral DNA synthesis. To determine the basis for increased nuclear E2F complexes, we investigated the effects of virus infection on the intracellular distribution of the E2F-dependent DNA binding complexes and their protein constituents. Western blot analyses of whole cell extracts revealed that amounts of E2F4, E2F1, DP1, and p107 remained unchanged after infection of C33 cells. Analysis of cytoplasmic and nuclear fractions, however, revealed that cytoplasmic E2F4 decreased and nuclear E2F4 increased. This correlated with a loss of cytoplasmic E2F DNA-binding activity and a corresponding increase in nuclear DNA-binding activity. Concomitant with its redistribution, the apparent molecular weight of total and p107-associated E2F4 increased, at least partially as a result of protein phosphorylation. Increased nuclear E2F-pRB in U2-OS cells was accompanied by the conversion of pRB from a hyper- to a hypophosphorylated state. Infection of U2-OS cells with viral mutants indicated that viral protein IE ICP4 was necessary for the decrease in cytoplasmic E2F-p107, and that viral protein DE ICP8 was required for nuclear accumulation of p107-E2F. In contrast, ICP8 was not required for accumulation of E2F-pRB. These results indicate that the increase in E2F-p107 may be explained by the redistribution and modification of E2F4 and the increase in E2F-pRB by modification of pRB

    Charm quark system at the physical point of 2+1 flavor lattice QCD

    Full text link
    We investigate the charm quark system using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on 323×6432^3 \times 64 lattice. The dynamical up-down and strange quark masses are set to the physical values by using the technique of reweighting to shift the quark hopping parameters from the values employed in the configuration generation. At the physical point, the lattice spacing equals a−1=2.194(10)a^{-1}=2.194(10) GeV and the spatial extent L=2.88(1)L=2.88(1) fm. The charm quark mass is determined by the spin-averaged mass of the 1S charmonium state, from which we obtain m_{\rm charm}^{\msbar}(\mu = m_{\rm charm}^{\msbar}) = 1.260(1)(6)(35) GeV, where the errors are due to our statistics, scale determination and renormalization factor. An additional systematic error from the heavy quark is of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}), which is estimated to be a percent level if the factor f(mQa)f(m_Q a) analytic in mQam_Q a is of order unity. Our results for the charmed and charmed-strange meson decay constants are fD=226(6)(1)(5)f_D=226(6)(1)(5) MeV, fDs=257(2)(1)(5)f_{D_s}=257(2)(1)(5) MeV, again up to the heavy quark errors of order αs2f(mQa)(aΛQCD)\alpha_s^2 f(m_Q a)(a \Lambda_{QCD}). Combined with the CLEO values for the leptonic decay widths, these values yield ∣Vcd∣=0.205(6)(1)(5)(9)|V_{cd}| = 0.205(6)(1)(5)(9), ∣Vcs∣=1.00(1)(1)(3)(3)|V_{cs}| = 1.00(1)(1)(3)(3), where the last error is on account of the experimental uncertainty of the decay widths.Comment: 16 pages, 12 figure

    Synthetic Light-Activated Ion Channels for Optogenetic Activation and Inhibition

    Get PDF
    Optogenetic manipulation of cells or living organisms became widely used in neuroscience following the introduction of the light-gated ion channel channelrhodopsin-2 (ChR2). ChR2 is a non-selective cation channel, ideally suited to depolarize and evoke action potentials in neurons. However, its calcium (Ca2+) permeability and single channel conductance are low and for some applications longer-lasting increases in intracellular Ca2+ might be desirable. Moreover, there is need for an efficient light-gated potassium (K+) channel that can rapidly inhibit spiking in targeted neurons. Considering the importance of Ca2+ and K+ in cell physiology, light-activated Ca2+-permeant and K+-specific channels would be welcome additions to the optogenetic toolbox. Here we describe the engineering of novel light-gated Ca2+-permeant and K+-specific channels by fusing a bacterial photoactivated adenylyl cyclase to cyclic nucleotide-gated channels with high permeability for Ca2+ or for K+, respectively. Optimized fusion constructs showed strong light-gated conductance in Xenopus laevis oocytes and in rat hippocampal neurons. These constructs could also be used to control the motility of Drosophila melanogaster larvae, when expressed in motoneurons. Illumination led to body contraction when motoneurons expressed the light-sensitive Ca2+-permeant channel, and to body extension when expressing the light-sensitive K+ channel, both effectively and reversibly paralyzing the larvae. Further optimization of these constructs will be required for application in adult flies since both constructs led to eclosion failure when expressed in motoneurons

    Mine Injury Casualties Report from the Iraq-Kuwait DMZ

    Get PDF
    After the implementation of the UN Iraq-Kuwait Observation Mission (UNIKOM) at the end of the first Gulf War in 1990, a medical team was set up in 1991 to support the UN troops in their difficult tasks in the demilitarised zone (DMZ), a remote desert area between Kuwait and Iraq. The medical team was designed to take care of the medical treatment for the UNIKOM members and the nomadic people living in the DMZ as pointed out in UN Secretary-General reports S/2001/287 and S/2001/913 on the official UN website

    Design of a five-axis ultra-precision micro-milling machine—UltraMill. Part 1: Holistic design approach, design considerations and specifications

    Get PDF
    High-accuracy three-dimensional miniature components and microstructures are increasingly in demand in the sector of electro-optics, automotive, biotechnology, aerospace and information-technology industries. A rational approach to mechanical micro machining is to develop ultra-precision machines with small footprints. In part 1 of this two-part paper, the-state-of-the-art of ultra-precision machines with micro-machining capability is critically reviewed. The design considerations and specifications of a five-axis ultra-precision micro-milling machine—UltraMill—are discussed. Three prioritised design issues: motion accuracy, dynamic stiffness and thermal stability, formulate the holistic design approach for UltraMill. This approach has been applied to the development of key machine components and their integration so as to achieve high accuracy and nanometer surface finish
    • …
    corecore