5,831 research outputs found

    Marine flora and fauna of the eastern United States Mollusca: Cephalopoda

    Get PDF
    The cephalopods found in neritic waters of the northeastern United States include myopsid and oegopsid squids, sepiolid squids, and octopods. A key with diagnostic illustrations is provided to aid in identification of the eleven species common in the neritic waters between Cape Hatteras and Nova Scotia; included also is information on two oceanic species that occur over the continental shelf in this area and that can be confused with similar-looking neritic species. Other sections comprise a glossary of taxonomic characters used for identification of these species, an annotated systematic checklist, and checklists of the 89 other oceanic species and 18 Carolinian and subtropical neritic species that might occur occasionally off the northeastern United States. (PDF file contains 30 pages.

    Studies in predictor display technique Final report

    Get PDF
    Predictor display technique for manual altitude control, and automatic pitch axis performanc

    The cost of systemic corticosteroid-induced morbidity in severe asthma : a health economic analysis

    Get PDF
    The study data-set was supported by the Respiratory Effectiveness Group through their academic partnership with Optimum Patient Care. Ciaran O'Neill was funded under a HRB Research Leader Award (RL/13/16).Peer reviewedPublisher PD

    Distribution, relative abundance and developmental morphology of paralarval cephalopods in the Western North Atlantic Ocean

    Get PDF
    Paralarval and juvenile cephalopods collected in plankton samples on 21 western North Atlantic cruises were identified and enumerated. The 3731 specimens were assigned to 44 generic and specific taxa. This paper describes their spatial and temporal distributions and their developmental morphology. The smallest paralarvae recognized for a number of species are identified and illustrated. The two most abundant and most frequently collected taxa were identifiable to species based on known systematic characters of young, as well as on distribution of the adults. These were the neritic squids Loligo pealeii and Illex illecebrosus collected north of Cape Hatteras, both valuable fishery resources. Other abundant taxa included two morphotypes of ommastrephids, at least five species of enoploteuthids, two species of onychoteuthids, and unidentified octopods. Most taxa were distributed widely both in time and in space, although some seasonal and mesoscale-spatial patterns were indicated. The taxa that appeared to have distinct seasonal distribution included most of the neritic species and, surprisingly, the young of the bathypelagic cranchiids. In eight seasonal cruises over the continental shelf of the middle U.S. Atlantic states, neritic taxa demonstrated approximately the same seasonal patterns during two consecutive years. Interannual differences in the oceanic taxa collected on the shelf were extreme. The highest abundance and diversity of planktonic cephalopods in the oceanic samples were consistently found in the vicinity of the Gulf Stream. Only eight of the oceanic taxa appeared to have limited areal distributions, compared with twelve taxa that were found throughout the western North Atlantic regions sampled in this study. Many taxa, however, were not collected frequently enough to describe seasonal or spatial patterns. Comparisons with published accounts of other cephalopod surveys indicate both strengths and weaknesses in various sampling techniques for capturing the young of oceanic cephalopods. Enoploteuthids were abundant both in our study and in other studies using midwater trawls in several areas of the North Atlantic. Thus, this family probably is adequately sampled over its developmental range. In contrast, octopoteuthids and chtenopterygiids are rare in collections made by small to medium-sized midwater trawls but are comparatively common in plankton samples. For families that are relatively common in plankton samples, paralarval abundance, derived similarly to the familiar ichthyoplankton surveys of fisheries science, may be the most reliable method of gathering data on distribution and abundance. (PDF file contains 58 pages.

    Functional Near Infrared Spectroscopy (fNIRS) synthetic data generation

    Get PDF
    Accurately modelled computer-generated data can be used in place of real-world signals for the design, test and validation of signal processing techniques in situations where real data is difficult to obtain. Bio-signal processing researchers interested in working with fNIRS data are restricted due to the lack of freely available fNIRS data and by the prohibitively expensive cost of fNIRS systems. We present a simplified mathematical description and associated MATLAB implementation of model-based synthetic fNIRS data which could be used by researchers to develop fNIRS signal processing techniques. The software, which is freely available, allows users to generate fNIRS data with control over a wide range of parameters and allows for fine-tuning of the synthetic data. We demonstrate how the model can be used to generate raw fNIRS data similar to recorded fNIRS signals. Signal processing steps were then applied to both the real and synthetic data. Visual comparisons between the temporal and spectral properties of the real and synthetic data show similarity. This paper demonstrates that our model for generating synthetic fNIRS data can replicate real fNIRS recordings

    Functional Near Infrared Spectroscopy (fNIRS) synthetic data generation

    Get PDF
    Accurately modelled computer-generated data can be used in place of real-world signals for the design, test and validation of signal processing techniques in situations where real data is difficult to obtain. Bio-signal processing researchers interested in working with fNIRS data are restricted due to the lack of freely available fNIRS data and by the prohibitively expensive cost of fNIRS systems. We present a simplified mathematical description and associated MATLAB implementation of model-based synthetic fNIRS data which could be used by researchers to develop fNIRS signal processing techniques. The software, which is freely available, allows users to generate fNIRS data with control over a wide range of parameters and allows for fine-tuning of the synthetic data. We demonstrate how the model can be used to generate raw fNIRS data similar to recorded fNIRS signals. Signal processing steps were then applied to both the real and synthetic data. Visual comparisons between the temporal and spectral properties of the real and synthetic data show similarity. This paper demonstrates that our model for generating synthetic fNIRS data can replicate real fNIRS recordings
    corecore